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Elastic interactions arising from a difference of lattice spacing between two
coherent phases can have a strong influence on the phase separation (coars-
ening) behavior of alloys. If the elastic moduli are different in the two phases,
the elastic interactions may accelerate, slow down or even stop the phase
separation process. If the material is elastically anisotropic, the precipitates can
be shaped like plates or needles instead of spheres and can arrange themselves
into highly correlated patterns. Tensions or compressions applied externally to
the specimen may have a strong effect on the shapes and arrangement of the
precipitates. In this paper, we review the main theoretical approaches that have
been used to model these effects and we relate them to experimental observa-
tions. The theoretical approaches considered are (i) ``macroscopic'' models
treating the two phases as elastic media separated by a sharp interface, (ii)
``mesoscopic'' models in which the concentration varies continuously across the
interface, and (iii) ``microscopic'' models which use the positions of individual
atoms.
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tions; sharp interface model; diffuse interface models; atomic lattice models.
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1. INTRODUCTION

1.1. The Scope of This Paper

The separation of an alloy into two phases is a technologically important
phenomenon whose theory owes much to the work of John Cahn. When the
two phases first form they are very finely mixed, with a large amount of
interface between the two phases. Atoms then diffuse within the material so
as to reduce the amount of interface, making the mixture of phases coarser
and coarser as time proceeds. The driving force for this coarsening process
comes from the free energy of the interface. For many alloys, where the
sizes of the two kinds of atoms composing the alloy are not too different,
the atoms manage to fit themselves on to a common lattice, but they can
achieve this only at the cost of significant distortion of the lattice. At first,
the energy arising from this distortion is relatively unimportant, but as the
coarsening proceeds the interfacial energy decreases and eventually the
elastic interactions, which are of long range and can also be strongly
anisotropic, may predominate. This change in the dominant driving force
can dramatically affect both the rate of coarsening and the structure of the
domains themselves in the late stages of the coarsening process.

In the present article we review some theoretical approaches that have
been used to model the effects of elastic interactions on coarsening in
alloys. We shall confine ourselves to alloys which are coherent (meaning
that the lattice structure is only distorted, not disrupted, by the misfit
between the two types of atom), and for that reason we shall not consider
any effects involving dislocations, such as plasticity. Moreover, we shall
consider only first-order phase transformations, in which the concentra-
tions are different in the two phases, so that diffusive transfer of material
from one place to another is an essential part of the process; martensitic
transformations, for example, will not be considered.

An idea of the relative importance of the elastic and surface energy
effects can be obtained by comparing the surface energy of a spherical
precipitate of radius R, which is 4?_R2 where _ is the interfacial energy per
unit area (the surface tension), with the elastic energy due to such a
precipitate, which is of order 1

2 (4?R3�3) Gq2 where G is a typical elastic
modulus, e.g., the shear modulus, and q is a typical strain due to the misfit
(see Appendix for symbols). The two energies are equal when RtR0=
6_�Gq2. At first, the precipitates are much smaller than this size, so that the
interfacial tension predominates; but later on in the coarsening process the
precipitates will be of this size or larger, so that elastic effects become
important. As an example, the value of R0 for Ni3 Al precipitates in nickel
is of order 10&7 m, and it has been shown(54) by experiments on a sequence
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of alloys with different values for R0 , that some of the effects due to elastic
misfit are proportional to R�R0 at small R�R0 .

We shall describe three different types of model which have been used
in the theory of these elastic effects. In the first, the two phases are treated
as continuous materials obeying the macroscopic laws of linear elasticity
theory4 and the interface between them is treated as a geometrical surface
(i.e., its thickness is ignored). This was the model used by J. D. Eshelby in
his pioneering work.(233, 229, 223) We shall call it the sharp interface model.
There are two versions of this model: a ``static'' version in which the
energies of different arrangements of the phases are compared without
detailed consideration of how the system can get from one arrangement to
the other, and a ``dynamic'' version in which the mechanism for such
changes, namely diffusion, is also allowed for. The static version will be
considered in Chapter 2 and the dynamic version in Chapter 3.

A second type of model, introduced by John Cahn in 1961, takes the
structure of the interface into account by using the concentration of one of
the alloy components as a field variable. Such models are sometimes
described as ``mesoscopic.'' The concentration field is approximately con-
stant (but at different values) in the two phases, and it varies continuously
across the interface. Its time variation is given by a deterministic differential
equation, analogous to the Cahn�Hilliard equation.(222) We shall call this
the diffuse interface model and describe it in Chapter 4.

In the third type of model a completely microscopic description is
used. The atoms are no longer represented by a continuum; instead we
follow them individually and model their diffusion by random jumps.
Although it gives no analytic results, this method has the merit that the
physical assumptions going into it are very simple. It also takes fluctua-
tions into account and therefore includes the possibility of nucleation in a
natural way. We shall call it the atomic lattice model and describe it in
Chapter 5.

In cases where the lattice parameters are approximately the same in
the two phases, so that the elastic misfit is unimportant, all three of these
methods have been found to give results in reasonable agreement with
experiments. For reviews, see Gunton, (167) Furukawa, (164, 159) Binder.(98)

However, when the misfit is important, the theoretical situation becomes
more complicated, and it may be that a combination of all the three
methods, or more, is necessary for a proper understanding.

Some effects on morphology and kinetics typically observed in experi-
ments are summarized in the next section. Many of these effects are actually
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reproduced by the various theoretical approaches. These effects range from
a change (typically a slowing down) in the rate of precipitate coarsening to
a transformation from nearly spherical to cube-like or plate-like precipitates
aligned along the elastically soft directions, that is, [100] and equivalent
ones in the case of Ni-base alloys. One also observes a direct effect of external
stresses on the coarsening behavior of alloys, which can lead to the formation
of cylinders or parallel plates with wavy interfaces.

1.2. Experimentally Observed Effects Due to Elastic
Misfit Interactions

The aim of the present chapter is not to give an exhaustive review of
the effects of elastic misfit strain on the phase separation process but rather
to show some typical examples. Because of the huge practical importance
of nickel-base superalloys for use at high temperatures, e.g., in turbine
blades, these alloys have attracted much interest in recent experimental
studies. Most of the following examples will focus on this type of alloy
system where the nickel-rich matrix (#-phase) has a face-centered cubic
structure and contains #$-precipitates with L12 structure of the type Ni3X,
where X may be Al, Ti, Si, etc.

1.2.1. Morphological Effects. Depending on the composition
of the alloy, the precipitates may be either round as, e.g., in Ni-Al-Si(68) or
cube-like as in, for example, Ni-Al.(79) The cube-like shape is, in fact, very
frequent in this type of system, appearing also in ternary alloys like Ni-Al-
Mo, (120, 112, 57, 58, 46, 24) Ni-Al-Ti(125) or Ni-Al-Cr.(132) The generally accepted
reason for the cube-like shape is the effect of anisotropic elasticity.
A further observation is the alignment of these precipitates, like strings of
pearls, along the elastically soft directions.

As an example, we show in Fig. 1 typical transmission electron
microscopy (TEM) and small-angle X-ray scattering (SAXS) data for Ni-
Al-Mo alloys. This ternary alloy system has the property that the lattice
misfit depends on the molybdenum content in such a way that negative,
positive or zero misfit is possible.(120) Figure 1a shows the TEM data for an
alloy with no misfit. The #$ precipitates, which appear white, are round in
this case, and arranged at random. The SAXS pattern (Fig. 1b), which
represents roughly the square of the Fourier transform of the microstruc-
ture (as depicted in Fig. 1a), is completely isotropic. This symmetry shows
that there is no preferred direction in the configuration of the particles.
This situation is exactly what one expects for a precipitate microstructure
which coarsens to reduce the total amount of interface between matrix and
precipitates.
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Fig. 1. (a) Transmission electron micrograph (TEM) of Ni-Al-Mo alloy with Mo-composi-
tion chosen such as to make the lattice spacing in matrix and precipitates (gamma-prime
phase) equal. Treatment: 430 h at 1048 K after quench from the single-phase region. The
plane of observation corresponds to the crystallographic plane (001). One observes round
precipitates i.e., no elastic effects. (b) Small-angle X-ray scattering (SAXS) data from the same
specimen in the same orientation. One observes an isotropic scattering pattern. (c) TEM of
the (001)-plane of a Ni-Al-Mo alloy with Mo-composition chosen such as to make the lattice
spacing in the precipitates (gamma-prime phase) larger by 0.40. Same thermal treatment as
in (a). One observes cube-like precipitates, aligned along the elastically soft directions, [010]
and [100]. (d) SAXS from the Specimen in (c). There is a flower-like pattern with four-fold
symmetry, the elongations being in [010] and [100]-directions (indicating flat interfaces and
strong correlations in those directions). (e) TEM of Ni-Al-Mo alloy with Mo-composition
chosen such as to make the lattice spacing in the precipitates (gamma-prime phase) smaller
(misfit &0.50). Treatment: 5 h at 1253 K (Orientation 001). The patterns are qualitatively
similar to those in (c). (f ) SAXS from the specimen in (e). (g) Same alloy and heat-treatment
as in (e), but now with an external compressive load of 130MPa applied to it along the
vertical [010]-direction. (h) SAXS from the specimen in (g). Note that the horizontal streak
has disappeared, corresponding to the disappearence of vertically oriented interfaces in (g).
The data in (a)�(d) are taken from ref. 46 and in (e)�(h) from ref. 24.

For comparison, Figs. 1c and 1d show the corresponding data for a
Ni-Al-Mo alloy with similar fraction of #$ phase but where the molyb-
denum content was adjusted to give a lattice misfit. Now the precipitates
are cube-like rather than spherical and they are arranged like strings of pearls
along the cubic directions [100] or equivalent ones. Correspondingly,
the SAXS patterns are no longer spherically symmetric, although they still
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Fig. 2. (a) Chessboard-like microstructure observed by transmission electron microscopy in
Co39.5 -Pt60.5 slowly cooled from 1023 K and aged 15 days at 873 K. The scale bar represents
30 nm. The cubic phase appears white while the tetragonal phase is black. (b) Computer
simulation using a diffuse interface model (From ref. 1).

have cubic symmetry. Figure 1e and Fig. 1f show a similar situation but
with a higher volume fraction of #$ precipitates. Strongly periodic arrange-
ments of precipitates are also found in alloys like Ti-Ni.(113, 28)

In some other types of alloys, a typical example being Al-Cu(22) it is
also common to find plate-like coherent precipitates as a result of elastic
misfit strains. The example of the so-called ``Guinier-Preston zones'' in
Al-Cu is particularly striking, since these coherent precipitates are practi-
cally monoatomic layers of copper which create large elastic distortions in
the aluminium matrix. Other examples of alloys with plate-like precipitates
are Cu-Be(48) and internally oxidized Cu-Fe.(69, 65)

A striking effect has been observed in alloys of the type Co-Pt(103) or
(CuAu)-Pt(59) where precipitates with tetragonal structure are developing
in a cubic matrix. Figure 2a (from ref. 1) shows the tile-like structures that
can develop.

Finally, it has been found in some nickel-base alloys that large cube-
like precipitates may even split into several smaller ones(71, 163) a process
which has also been related to elastic interactions(141) (see Fig. 4).

1.2.2. Effects on Coarsening Kinetics. The reported effects on
the rate of coarsening are seemingly less consistent. In some cases, an
increase of the mean precipitate radius proportional to t1�3, t being the
annealing time, has been reported, as in Ni-Al-Mo(112, 46) or Ni-Al-Si.(68)
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This growth law is very similar to what is usually found in alloys without
lattice misfits and in computer simulations. It is due to a ripening process,
described in the Lifshitz�Slyozov�Wagner (LSW) theory,(225, 226) where the
large precipitates grow at the expense of the small ones, thereby reducing
the total interface area between matrix and precipitates.

In some other cases, e.g., Ni-Cu-Si alloys, the coarsening starts out
according to a t1�3 but slows down in later stages, eventually even coming
to a standstill. This behaviour is illustrated in Fig. 3 where the growth of
the mean precipitate size R is plotted for Ni-Al-Mo (Fig. 3a) and for
Ni-Cu-Si (Fig. 3b) alloys. Another example of this type of behaviour is
provided by the titanium-rich |-phase precipitates in Ti-Mo(67) (see Fig. 3c).
(A slowing down of coarsening had also been reported early on for the
binary alloy Ni-Si where the misfit is rather small, (132) but this was not con-
firmed in later studies.(17)) The usual interpretation of this slowing down is
inverse coarsening, which means that, because of the elastic interaction,
smaller precipitates may grow at the expense of larger ones even though
this increases the interfacial area.

There is, however, no generally accepted explanation for the fact that
slowing down of coarsening is observed in some cases but not in all. One
possibility is that the inverse coarsening may reduce the prefactor * in the
expression

Rr*t1�3 (1)

instead of affecting the exponent 1�3. This is, indeed, observed in some
Ni-Al-Si alloys(68) Another proposal is that there could be an interplay
between elastic heterogeneity and anisotropy such that inverse coarsening
would only become predominant in cases where the anisotropy is not too
large.(55, 30)

Fig. 3. Time-dependence of the mean precipitate size for (a) Ni-Al-Mo alloys (from ref. 46),
(b) Ni-Cu-Si alloys (from ref. 149) and (c) Ti-Mo alloys (from ref. 67). The coefficients M(c)
in (a) and M(T ) in (c) are used to scale data obtained for different alloy compositions or dif-
ferent temperatures, respectively.
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Fig. 4. Typical example of ordered precipitates in a nickel-base superalloy, which split into
several pieces during the coarsening process (from ref. 71).

1.2.3. The Role of Applied Stress; Rafting. When an external
stress is applied to an alloy it can cause the shapes and arrangement of
the precipitates to change. For example, as already mentioned and shown
in Fig. 1c�f, in a nickel-base alloy annealed without external stress the
precipitates are approximately cubes and are arranged in a cubic array, in
conformity with the cubic symmetry of the crystal. If a compression is
applied along the [010] axis the precipitates shorten along this axis
and widen along the other two axes. At large enough compression the
precipitates join up and form plates at right angles to the [010] direction.
On the other hand a tension along the [010] axis causes the precipitates
to lengthen along this axis and eventually form rods. This behaviour is
shown for the case of the Ni-Al-Mo alloy system in Fig. 1g. The corre-
sponding SAXS pattern (Fig. 1h) shows clearly the breaking of the cubic
symmetry. Pictures very similar to Fig. 1h have been published very
recently for a uniaxially strained commercial nickel-base superalloy studied
by small-angle neutron scattering.(27)

This phenomenon, known as rafting, was first observed experimentally
by Webster and Sullivan,(213) Sullivan et al.(210) and Tien and Copley.(202)

A well-written short review of the subject is given in ref. 36; see also ref. 38.
The mechanism of rafting is thought by many authors (Socrate and Parks
1993,(82) Pollock and Argon 1994, (70) Valle� s and Arrell 1994, (64, 74) Buffie� re
and Ignat 1995,(44) Svoboda and Luka� c� , (41) Ohashi et al. 1997(23)) to
involve not only the diffusional and elastic effects considered here but also
dislocations and plasticity; however such considerations are beyond the
scope of this paper.
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2. THE STATIC SHARP INTERFACE MODEL

In the sharp interface model the two phases, which we call : and ;, are
modelled as distinct regions of space which, together with the sharp inter-
face between them, make up the entire region 0 occupied by the specimen.
The two regions will be called 0: and 0;, and the interface between them
will be denoted by 1. It frequently happens that one of the phases consists
of disconnected domains called precipitates or inclusions, while the other
phase, called the matrix, occupies the remaining region which looks some-
thing like a Swiss cheese. In this case we shall normally take 0: to com-
prise the inclusions and 0; to be the matrix.

There are two versions of the sharp-interface model, which we shall
call the static and dynamic versions. In the static version, time evolution is
not considered, and the local composition of the alloy need not be con-
sidered either; the main thing that the model can do is to compare the
(free) energies of various configurations of inclusions. In the dynamic ver-
sion, which we shall consider in the next chapeter, we do consider time
evolution, and since the mechanism for time evolution is diffusion the local
composition of the alloy must then be included in the model.

Although the static model contains no explicit time evolution and
therefore no coarsening, it does provide information about time evolution
and coarsening through the principle that the free energy must decrease
with time. For example, we can look for the energy-minimizing shape of an
isolated inclusion of a given volume, and under suitable conditions the
actual inclusions having this volume should be close to this shape (which
is not necessarily spherical, even in an isotropic material). The theory of
the model also contains important general results about the elastic energy,
such as the ``Bitter-Crum'' theorem (see Section 2.1.4), and the elasticity
theory contained in it underpins the models described in later sections.

2.1. Theory of the Energy of Inclusions in an Elastic Medium

The free energy of the system can be written in the form

F=|
0

( f +w) d3x+F 1+W ext (2)

where f denotes the thermodynamic free energy density at zero macroscopic
stress, w is the elastic free energy density (defined as the additional free
energy density due to the macroscopic stress), F 1 denotes the free energy
of the interface and W ext denotes the potential energy of any external
mechanism that the specimen may be connected to, for example a weight
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attached to one end of the specimen. In the static version of the model,
which we are considering in this chapter, the value of f can be different in
the two phases, but is uniform throughout each phase. The variable of
integration x is the coordinate of the relevant material point in the
unstrained reference state of the material, so that a given material point
always has the same value of x, regardless of where the deformation has
taken it to.

To write down a formula for the elastic energy density w we first define
the displacement field u; its definition is that the material point x in the
undeformed material5 will be found at the point x+u(x) in the deformed
material. The strain tensor is then defined (we are using linear elasticity
theory; for the nonlinear formula see Eqs. (1), (3) of ref. 228) by giving its
Cartesian components6

eij (x)=
1
2 \

�ui

�xj
+

�uj

�xi+ (3)

We shall also need the stress-free strain tensor7 e0
ij (x), defined as the value

which the strain tensor at x would have if the material were uniform and
unstressed. The stress-free strain is taken to be a different constant in each
of the two phases, corresponding to their different chemical compositions.
The difference between the stress-free strains in the two phases is called the
transformation strain or misfit strain. A common assumption is that, under
zero stress, one of the two phases is simply a scaled-up version of the other.
Let us denote the scale factor by 1+q, so that the stress-free lattice spacing
of the inclusion material is greater than that of the matrix material by a
factor 1+q, corresponding to a relative difference in specific volume of
approximately 3q if q is small. Then the stress-free strain can be given the
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constant multiple of the unit tensor to �ui ��xj and to the stress-free strain tensor. This trans-
formation leaves the energy expression (5) invariant or (if the externally applied stress,
modelled as in Eq. (9), includes an isotropic component) merely adds to it a constant which
is independent of the state of the specimen. Physically measurable quantities such as the
energy differences between different configurations and the differences of the stress-free
strains between the two phases are not affected by the choice of undeformed lattice.

6 Some authors omit the factor 1�2 in Eq. (3) when i{ j, but if that is done then eij is not a
tensor.

7 This tensor has also been called the ``intrinsic strain'', (160) and the ``spontaneous deforma-
tion''.(156) It is an example of what Mura(175) calls an ``eigenstrain.''



value zero in the matrix (this corresponds to a particular choice for the
reference state of the material) and to have the simple form

e0
ij=q$ij (4)

in the inclusions.
In linear elasticity the elastic energy is a quadratic function of the

strain tensor. In view of our convention that the elastic energy is zero at
zero stress, we can write this quadratic function

w= 1
2 :

ijmn

*ijmn(eij (x)&e0
ij (x))(emn(x)&e0

mn(x)) (5)

Here *ijmn , a fourth-rank tensor, is called the (isothermal) elasticity tensor
or stiffness tensor. This tensor is positive definite, in the sense that w is
positive unless the tensors eij and e0

ij are equal. In principle the components
*ijmn depend on the local chemical composition and therefore on position,
but in the static sharp-interface model this dependence is generally neglec-
ted and the *ijmn are taken to be constant in each phase, though not
necessarily the same constant. Likewise, the stress-free strain tensor e0

ij is
generally taken to be a constant in each phase (as in the example given
above, Eq. (4)), though its dependence on composition has been taken into
account in some calculations, for example ref. 153.

The formula (5), which generalizes a standard formula of elasticity
theory (Eqs. (10), (1) of ref. 228) to the case of non-vanishing stress-free
strains, has been in use in one form or another since the beginnings of this
subject (e.g., refs. 223, 215, 212). It corresponds to a particular way of
apportioning the total free energy density between the two terms f and w,
in which f is defined to be the free energy at zero stress. The alternative
convention, to define f as the free energy at zero strain, has also been
used.(116)

The *ijmn 's are symmetric under interchange of i and j, of m and n, and
of the pair (i, j) with the pair (m, n); and they usually have further sym-
metries reflecting the symmetries of the crystal lattice. The most symmetri-
cal case of all is an isotropic solid such as rubber, for which the elastic
energy density simplifies (in linear elasticity theory) to

w= 1
2 K {:

k

(2e)kk=
2

+G :
ij {(2e) ij&

1
3$ ij :

k

(2e)kk=
2

(6)

where K is the bulk modulus, (2e)ij means eij&e0
ij , G is the shear modulus

(often denoted by +) and �ij means �i � j . The non-zero elements of the
elasticity tensor in this case are *1111=K+ 4

3G, *1122=K& 2
3G, *2323=G
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and the ones related to these by symmetry, e.g., *1221=*2323 . A more
realistic case for metallurgists is the cubic crystal, for which in the conven-
tional notation

w= 1
2C11 :

i

(2e)2
ii+C12[(2e)11 (2e)22+(2e)22 (2e)33+(2e)33 (2e)11]

+2C44((2e)2
12+(2e)2

23+(2e)2
31) (7)

so that *1111=C11 , *1122=C12 , *2323=C44 , etc.
For the interfacial energy term F 1 in (2) we shall use the simplest

reasonable assumption,

F 1=_ |1 | (8)

where _ is the surface tension, assumed constant, and |1 |=�1 d2x denotes
the area of the undeformed interface. More general possibilities have also
been considered��anisotropic surface energy by Cahn and Hoffman
(1974), (193) surface energy depending on the deformation as well as the
undeformed area by Gurtin and Murdoch (1975), (191) Cahn and Larche�
(1982)(172)��but these refinements have not been important in the theory of
coarsening.

To model the externally applied forces in a simple way, we shall
assume that there are no body forces, and that the tractions (forces per unit
area) applied to the surface �0 of the specimen are of the form �j text

ij nj ,
where nj is the unit outward normal vector and text

ij , which we take to be
symmetric and independent of position, is the externally applied stress ten-
sor. The energy W ext of the mechanism providing these tractions can then
be equated to its energy when the specimen is in the reference state minus
the work it does in bringing the specimen from its reference state to the
state with displacement field ui , so that

W ext=const.&|
�0

:
ij

ui text
ij nj d2x (9)

Choosing the constant to be zero, and using first the divergence theorem
(applied to the vector field obtained by multiplying ui by a unit vector in
the j direction) and then the formula (3) and the symmetry of text

ij we can
write this in the alternative form

W ext= &|
0

:
ij

text
ij

�ui

�xj
d3x=&|

0
:
ij

text
ij eij d3x (10)
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In this formula, eij is the strain in the presence of the externally applied
stress, which in linear elasticity is an affine function8 of text

ij . To first order
in the externally applied stress, therefore, the strain eij in (10) can be given
the value it has when there is no externally applied stress.

2.1.1. Elastic Equilibrium. To evaluate the elastic terms in (2),
we need the displacement ui at each point in space. The condition deter-
mining ui is that it should minimize the elastic energy �0 w d3x+W ext. The
Euler�Lagrange equation for this minimization, called the equation of
elastic equilibrium (Eqs. (2), (6) of ref. 228), is (since text

ij is a constant)

:
j

�t ij

�x j
=0 (11)

where tij is the stress tensor, defined (Eqs. (3), (6) of ref. 228) by

tij=
�w

�ui, j
(12)

in which ui, j means �ui ��xj .
Using (5) in (12) we find with the help of the symmetry relation

*ijmn=* jimn that the stress tensor is related to the strain tensor by

tij=:
mn

*ijmn(emn&e0
mn) (13)

(Hooke's law) and is therefore symmetric. In the isotropic case, with w
given by (6), Hooke's law takes the form

tij=K$ij :
k

(2e)kk+2G {(2e) ij&
1
3 $ij :

k

(2e)kk = (14)

To complete the specification of the elastic equilibrium problem, we
need conditions on the elastic field variables at the interface 1 and at the
boundary of the specimen. On 1, the condition of coherence requires u to
be continuous:

[u]=0 (15)

where [u] means [u]:
; , that is u:&u;, the difference between the limiting

values of u on the two sides of the interface. Moreover, the values taken by
the field u at the interface (which describe the position of the interface in
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the deformed material) must satisfy an energy minimization condition.
Since we are assuming that the energy of the interface depends only on its
position relative to the lattice, the surface energy is not changed by changes
of the value of u at the interface, and minimization of the elastic energy
gives the condition

:
j

[t ij] n j=0 (16)

where [tij] means t:
ij&t;

ij , and n is a vector normal to the interface. The
physical interpretation of Eq. (16) is that the forces exerted on the interface
by the material on each side of it must be equal and opposite.9

The boundary conditions at the surface of the specimen depend on the
physical situation there. If the boundary of the specimen is clamped, then
the system of Eqs. (11) and (13) should be solved subject to prescribed
values of ui on �0. In the more common situation where known forces are
applied at the boundary the boundary condition (analogous to (16) and
obtained by minimizing F without restricting ui at the boundary) is that
the surface tractions due to the internal stresses are equal to the externally
applied surface tractions:

:
j

tijnj=:
j

text
ij nj (17)

where, as before, nj denotes a unit vector normal to the boundary �0.
It is also possible to use periodic boundary conditions, taking 0 to be

a cube (or rectangular prism) and requiring the stress and strain fields to
be periodic with unit cell 0. (Periodic boundary conditions rule out the
consideration of surface effects, of course, but such effects do not concern
us here.) In general, the displacement field ui will not be periodic, but by
virtue of (3) it can be written in the form

ui=u$i+:
j

Uijx j (18)

where u$i is periodic10 and Uij is a constant tensor, not necessarily sym-
metric. Then, using (3), the strain can be written in the manifestly periodic
form

eij=e� ij+
1
2 \

�u$i
�xj

+
�u$j
�xi+ (19)
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where the constant tensor e� ij is the space-averaged strain

e� ij=
1

|0| |0
eij (x) d3x=

1
2

(Uij+Uji) (20)

The value of e� ij does not appear in the elastic equilibrium equations but it
can be determined by direct minimization of F (as given by (2) after using
(19) in (5) and (10)) with respect to e� ij ; the minimum occurs when

|
0

t ij d3x=|
0

text
ij d3x (21)

(The transformation (19) is also useful for the case where u is fixed at the
boundary, since one may be able to make u zero on the boundary by a
suitable choice of Uij .)

2.1.2. The Interface Condition for Inclusions of Fixed
Volume. In the static sharp-interface model, we are only concerned with
equilibrium configurations, not in how they are reached. Since diffusion is
being neglected, the amount of solute in each inclusion cannot change, and
since the concentration in each phase is also fixed, the volume of the inclu-
sion cannot change. In this model, therefore, the shapes and positions of
the surfaces 1 surrounding each inclusion are to be found by minimizing
the energy subject to the constraint that the volume of each precipitate is
held fixed. In this section we formulate a necessary condition which 1 must
satisfy at any such energy minimum.

Let 1 be the surface of an inclusion 0: in a matrix 0; and consider
a small displacement of 1 to a new position 1 $, each point x on 1 moving
to point x+n(x) $x(x) on 1 $ (see Fig. 5). Here n(x) is a unit vector per-
pendicular to 1 at x, pointing outwards from the inclusion (i.e., from 0:

to 0;, and $x(x), a small scalar, is the signed perpendicular distance from
x to the nearest point on 1 $, positive if this point is in the ; phase of the
1 configuration. Denote the region between 1 and 1 $ by $0:. Since we are
not considering diffusion at present, the volume of the inclusion is fixed, so
that the volume of $0:, with an appropriate sign convention, is zero. Thus
we have (to lowest order in $x)

|
1

$x d2x=0 (22)

Now consider the change in energy on going from 1 to 1 $. There is no
change in the total thermodynamic free energy � f d3x, since the volume of
the inclusion does not change. The change (increase) in the elastic energy
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Fig. 5. Geometrical objects used in Section 2.1.2.

between the two configurations, as given by Eq. (2), is the sum of three
terms:

1. the change in surface energy due to the change in the area of 1.
This energy increase is equal (in three dimensions) to the surface tension
_ times the increase in undeformed area �1 (2} $x) d2x, where } is the
mean curvature, taken positive if the centre of curvature is on the : side of 1.

2. the change in total elastic energy due to the fact that (for positive
$x) the region $0:, which was previously on the ; side of the interface, is
now on the : side. To lowest order in $x this increase is �1 [w] $x d2x
where [w]=w:&w; is the difference between the elastic energy densities
on the two sides of the interface at x.

3. The change in the elastic energy due to changes $u in the displace-
ment field outside $0:. Denoting these displacements by $u and using the
definition (12) of tij we can write the energy change, to lowest order, as

|
0

:
ij

tij $ui, j d3x=|
0

:
ij

[(tij $ui), j&tij, j $ui] d3x (23)

where the notation ( } } } ), j means �( } } } )��xj . The second term in the
integrand is zero because of the elastic equilibrium condition (11). Applying
the divergence theorem separately to the regions 0: and 0;, and assuming
that the surface of the specimen is either held fixed, so that $u=0 there, or
is too far away to matter, we can simplify the remaining term to

|
1

:
ij

nj[tij $ui] d2x=|
1

:
ij

nj t:
ij [$ui] d2x (24)

by (16). The last equation would also be true with t;
ij replacing t:

ij . To
evaluate [$ui] (which means [$ui]

:
;) we write it as a line integral across

$0:
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[$ui]=[$ui]
:
;=&[$ui]

;
:=&|

$x

0
:
j

�($ui)
�xj

nj dz

=&|
$x

0
:
j

$
�ui

�x j
nj dz

=&$x :
j

[ui, j] nj (25)

Adding together the three contributions we find for the change in the
total energy W

$W=|
1 {2_}+[w]&:

ik

Ti [ui, k] nk= $x d2x (26)

where we have defined Ti=�j t:
ijnj=�j t;

ij n j , the normal traction at the
interface.

For W to be a minimum against arbitrary changes of shape or posi-
tion of the inclusion which satisfy the constant-volume condition (22) it is
necessary for the coefficient of $x in the integrand of (26) to satisfy

2_}+[w]&:
ik

Ti[u i, k] nk= p (27)

where p is a Lagrange multiplier, the same at all points on 1, which can
be thought of as the excess pressure inside the inclusion. If there is more
than one inclusion, p can be different for different inclusions.

If the inclusion is not in equilibrium with respect to changes of shape
or position, then its surface will tend to move, since the energy can be
decreased by moving the interface towards the : phase in the places where
the left side is greater than the right side, and towards the ; phase in the
places where the right side is greater. The mechanism for this movement of
the interface is diffusion, which we discuss in Chapter 3.

2.1.3. The Fourier Transform Solution. If the elasticity tensor
is independent of position (i.e., for the sharp interface model, if it is the
same in both phases) we speak of homogeneous elasticity. In that case, the
equation of elastic equilibrium, (11), can be solved by Fourier transforms
for the case where 0 is a rectangular box with periodic boundary condi-
tions. In this way the elastic energy of an arbitrary arrangement of inclu-
sions in such a box, or an arbitrary periodic arrangement of inclusions in
an infinite specimen, can be expressed as a sum or integral in Fourier
space. Moreover, the stress-free strain tensor e0

ij need not be restricted
to two different values, one in 0: and the other in 0;, but can vary with
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position in any way. This method of solution has been extensively developed
by Khachaturyan(215, 209, 170) and by Mura.(175)

We define the Fourier components of the displacement vector and the
stress-free strain tensor by

u~ (k)=|
0

eik } xu$(x) d3x (28)

e~ 0
ij (k)=|

0
eik } xe0

ij (x) d3x (29)

where u$ is the vector whose components u$i are defined in (18). Using Par-
seval's theorem and the symmetries such as *ijmn=*jimn , the elastic energy
formula implied by (5) and (10) can be written

W(eij ( } ))=|
0 \w&:

ij

text
ij eij+ d3x

=
1

2 |0|
:

k{0

:
ijmn

(iu~ i*(k) kj&e~ 0ij (k)) *ijmn(&iu~ *m(k) kn&e~ 0
mn(k)*)

+
|0|
2

:
ijmn

(e� ij&e� 0
ij) * ijmn(e� mn&e� 0

mn)&|0| :
ij

text
ij e� ij (30)

where |0| means the volume of 0, the star denotes a complex conjugate,
the k-summation goes over the reciprocal lattice of 0, e� ij means the space
average of eij (x) (see Eq. (20)) and e� 0

ij means the space average of e0
ij . Mini-

mizing the right side of (30) with respect to u(k) and e� ij , we obtain for the
actual elastic energy (see refs. 215, 208, 170)

W=
1

2 |0|
:

k{0

:
ijmn

e~ 0
ij (k)* 9ijmn(k) e~ 0

mn(k)&|0| :
ij

text
ij \e� 0

ij+
1
2

eext
ij + (31)

where

9ijmn(k)=*ijmn& :
pqrs

*ijpqkp Zqr(k) ks*rsmn (k{0) (32)

Zij (k) being the inverse of the matrix

(Z&1) ij=:
mn

km*imnj kn (33)

and eext
ij means the solution of �mn *ijmn eext

mn=text
mn . Note that 9 ijmn is

homogeneous of degree zero in k: it depends only on the direction of the
vector k, not on its length. Also, 9(k) is positive semi-definite for each
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value of k, in the sense that �ijmn e*ij 9ijmn(k) emn�0 for any tensor eij ; this
property follows from the fact that this last sum is the value of the
obviously positive corresponding term of the sum over k in (30) for a par-
ticular value of u(k).

In an alloy where e0
ij (x) takes just two values, e:

ij in 0: and e;
ij in 0;,

the definition (29) gives

e~ 0
ij (k)=[e0

ij] %(k) (k{0) (34)

where [e0
ij] stands for the transformation strain e:

ij&e;
ij and %(k) is defined

by

%(k)=|
0:

eik } x d3x (35)

Substitution of (34) into (31) gives Khachaturyan's formula(215, 170)

W&W ext= 1
2 :

k{0

B(k) |%(k)| 2 (36)

where we define

B(k)= :
ijmn

[e0
ij] 9ijmn[e0

mn] (37)

Like 9ijmn(k), the function B depends only on the direction of the vector
k, not on its length.

Using Parseval's theorem, the sum over k in (31) can be expressed as
an integral over position space:

W=
1

2 |0| ||0
:

ijmn

(e0
ij (x)&e� 0

ij) Hijmn(x&y)(e0
mn(y)&e� 0

mn) d3x d3y+W ext

(38)

where Hijmn stands for |0|&1 �k{0 9 ijmn(k) e&ik } x, the inverse Fourier
transform of 9ijmn , and W ext is equal to the sum involving text

ij in (30).
Equation (38) shows how, in the case of homogeneous elasticity, the effect
of elastic forces is equivalent to a certain two-point interaction.(170, 135) It is
a singular interaction, however: it generally includes a delta-function at
zero range, arising from the fact that the k-space average of 9ijmn(k) is not
zero. For anisotropic elasticity this interaction also decays very slowly at
large distances, because its Fourier transform depends only on the direc-
tion of k and is therefore discontinuous as k � 0. In three dimensions,
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Hijmn(x&y) decays like the cube of the distance |x&y|, for distances small
compared to the size of 0.

In the special case where the material is isotropic (see Eq. (6)) as well
as being elastically homogeneous and where the stress-free strain is a pure
dilatation as in Eq. (4), only the delta-function component of Hijmn is
present, and Eq. (38) simplifies to

W=
18KG

3K+4G |
0

(q(x)&q� )2 d3x+W ext (39)

where q(x) is defined to be q inside the inclusions and 0 outside, and q� is
the space average of q(x). The result (39), without the term W ext, is due to
Cahn (1961).(222) He writes the expression in front of the integral sign more
neatly as 2E�(1&&), where E is Young's modulus and & is Poisson's ratio.11

The question of what formula replaces (38) if the elastic stiffness
matrix is heterogeneous (i.e., different in the two phases) was considered by
Onuki in 1989(135) for isotropic elasticity and in 1990(117, 116) for a cubic
crystal. Treating the inhomogeneity as a small perturbation, he found that
to first order of perturbation the elastic energy could be expressed as the
sum of three parts

1. a long-range interaction due to the anisotropy;

2. a dipolar interaction which is proportional to the external stress
and to the amount of inhomogeneity;

3. a non-quadratic ``Eshelby'' interaction proportional to the amount
of inhomogeneity.

Khachaturyan et al. (1995) (50) carried this type of analysis further,
considering higher orders of perturbation. They found that in the lowest
order of perturbation the inhomogeneity is equivalent to a four-point inter-
action; in the next order, to a six-point interaction, and so on.

2.1.4. Two Theorems

Theorem 1 (Eshelby (1956)(231, 223)). If the elasticity tensor * ijmn ,
the external stress tensor text

ij , and the stress-free strains e:
ij and e;

ij in the
two phases are independent of position, then W ext depends only on the
total volume of the inclusions and not on their sizes, shapes, number or
arrangement.
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Proof. By the conditions of the theorem, the tensor eext
ij defined just

after Eq. (33) is independent of position. Hence Eq. (10) can be written

W ext=&:
ij

eext
ij |

0
:
mn

*ijmn emn d3x

=&:
ij

eext
ij |

0 \tij+:
mn

*ijmn e0
mn + d3x by (13)

=&:
ij

eext
ij {|0

text
ij d3x+:

mn

*ijmn( |0:| e:
mn+|0;| e;

mn)= (40)

by (21). This last expression depends on the inclusions only through their
total volume. K

Theorem 2 (The ``Bitter-Crum'' theorem).12 Under the conditions
of Theorem 1, if in addition the elasticity tensor and the stress-free strain
tensor are isotropic, then for an infinite or periodic specimen the elastic
energy W depends only on the total volume of the inclusions, not on their
sizes, shapes, positions etc.

Proof. For periodic boundary conditions, the result follows from the
formula (39), since the integral is equal to |0:| (q:&q� )2+|0;| (q;&q� )2

and is therefore independent of how the inclusions are arranged. For an
infinite system, the integral in (39) is replaced by one over all space, and
since q� is now equal to q;, the integral is equal to |0:| (q:&q;)2 and is
again independent of how the inclusions are arranged. K

Both theorems, especially the first, are somewhat counter-intuitive.
The first theorem tells us that in order to explain rafting using linear
elasticity theory we must either use a heterogeneous stiffness tensor or else
have more than one type of inclusion so that the stress-free strain can be
different in different inclusions. (For further information about general
theorems relating to rafting, see ref. 37.) The second theorem tells us, as
John Cahn has always seen very clearly, (45) that if there is to be an elastic
interaction affecting the shape or separation of inclusions then at least one
of the following conditions must be violated:

1. Matrix and inclusion(s) have the same elastic stiffness tensor,
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See also Eshelby 1957, 1959.(229, 227) The name ``Bitter-Crum'' theorem was, apparently,
devised by John Cahn.(162)



2. The strain characterizing the misfit is isotropic (i.e., purely dilata-
tional),

3. The elasticity tensor is isotropic,

4. The crystal has no boundaries (i.e., it is infinite, or periodic),

5. The stress depends linearly on the displacement field.

As we shall see, different violations produce different effects on the
coarsening behaviour.

2.2. Energy Calculations for Isotropic Elasticity

In the rest of this chapter we consider some applications of the static
sharp interface model. In the present section we shall use the approxima-
tion that both the stiffness tensor and the stress-free strain are isotropic.
Although real metals are always anisotropic, such calculations are useful
because they can be used to investigate the effect of elastic heterogeneity
(i.e., of violations of condition 1 of the Bitter-Crum theorem). Effects due
to anisotropy will be considered in the following Section 2.3.

2.2.1. Elementary Calculations with Isotropic Elasticity
and Misfit. We consider first two types of inclusion whose elastic
energies in an infinite matrix can be calculated quite easily, the plate (slab)
and the sphere. To allow for the possibility of finite volume fractions, in
which case it is not obvious a priori which phase will constitute the inclu-
sions and which the matrix, we shall allow the stress-free strain to differ
from zero in both phases, being given by the isotropic formula (4) but with
different values for q in the two phases. The object of the calculations is to
find the space-averaged energy per unit volume and also the space-
averaged strain (which gives information about the response to an exter-
nally applied stress).

Plate-Shaped Inclusions. Consider a configuration consisting of
alternating slabs of the two phases, the slabs of phase : having thickness
h:, those of phase ; having thickness h;. Denote the normal to the faces of
the slabs by n. The equations of elastic equilibrium have a solution in
which the strain in the : phase has the form

e:
ij=Q: $ ij+P:($ij&3ni nj) (41)

where P: and Q: are constants, and similarly for the ; phase. The total
energy per unit volume of material can be calculated from Eq. (6); for an
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isotropic stress-free strain, as given by Eq. (4) generalized to allow for non-
zero values of q in each of the two phases, it is

w� =[ 9
2K:(Q:&q:)2+6G:(P:)2] ,+[ 9

2K ;(Q;&q;)2+6G;(P;)2](1&,)

(42)

where ,=h:�(h:+h;) is the volume fraction of phase :.
The expression (42) is to be minimized subject to the coherence con-

straint (15), which because of (3) and (41) is now

P:+Q:=P;+Q; (43)

(This minimization automatically takes care of the stress continuity condi-
tion (16)). The minimum value, which gives the actual mean energy density
of this system of inclusions, is

w� =
9,(1&,)

2
K

*
[q]2 (44)

where K
*

is defined by

1
K

*
=

1&,
K: +

,
K;+

3
4 {

1&,
G: +

,
G;= (45)

In the limit where the volume fraction of the precipitates goes to zero, (this
includes the case of a single plate-like inclusion in an infinite matrix) the
energy per unit volume of precipitate is

lim
, � 0

w� �,=
18K:G:[q]2

3K:+4G: (46)

If there is a small externally applied stress, the resulting energy can be
found from the average strain at zero applied stress, using (10). The
anisotropic (deviatoric) part of this average strain is

e� ij&
1
3

:
k

e� kk=&(,P:+(1&,) P;)=
3
4 \

1
G:&

1
G;+ K

*
[q] (47)

We shall not need the isotropic part.
It is not hard to generalize these results to a cubic crystal, if n is in a

convenient direction. If n is along one of the crystal axes, it is only
necessary to replace K by (C11+2C12)�3 and G by (C11&C12)�2 in the
various formulas. If n is along the [111] direction, G should instead be
replaced by C44 .
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Spherical Inclusion. Consider a spherical inclusion of : phase, of
radius R1 , embedded in a larger sphere of ; phase having radius R2 .
Putting the centres of both spheres at the origin, we look for a solution in
the form

u={
Q:x ( |x|<R1)

(48)
Q;x+P{

1
|x|

(R1<|x|<R2)

where Q:, Q; and P are scalar constants. Since u is radial in both solutions,
the coherency condition (15) can be satisfied by making

Q:R1=Q;R1&P�R2
1 (49)

Using (3) we find that the strain is

eij={Q: $ij

Q; $ij+P(3xixj&|x|2 $ij)�|x|5

( |x|<R1)
(R1<|x|<R2)

(50)

Hence, by (6), the elastic energy is

W=
4?R3

1

3
9K:

2
(Q:&q:)2+

4?(R3
2&R3

1)
3

9K;

2
(Q;&q;)2

+|
R2

R1

6G; \P;

r3 +2 4?r2 dr

=
4?R3

2

3 {9K:

2
(Q:&q:)2 ,+

9K;

2
(Q;&q;)2 (1&,)

+6G;(Q;&Q:)2 ,(1&,)= (51)

where ,=(R1 �R2)3 is the volume fraction of phase :, and we have used
(49) to eliminate P in the second line.

The expression (51) is to be minimized with respect to Q: and Q;. The
minimum value can be written in the form (4?R3

2 �3) w� , where w� , the actual
space-averaged elastic energy per unit volume, is given by

w� =
9,(1&,)

2
Kv[q]2 (52)

with Kv defined by

1
Kv

=
1&,

K: +
,

K;+
3

4G; (53)
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In the limit of zero ,, which includes the case of a single spherical inclusion
in an infinite matrix, the energy per unit volume of inclusion is

lim
, � 0

w� �,=
18K:G;[q]2

3K:+4G; (54)

For this geometry, the space average of the strain is purely isotropic,
and so (by (10)) the linear part of the energy of a spherical inclusion due
to an externally applied field is zero.

Conclusions. From these elementary calculations we can draw some
tentative conclusions about the effects of elastic inhomogeneity on the
energetically preferred configurations of the precipitates, provided that
elastic anisotropy does not mask these effects.

First of all, a comparison of Eqs. (54) and (46) shows that if G:>G;,
that is if the inclusion is more rigid than the matrix, then the sphere has
lower energy than the plate; on the other hand if the inclusion is less rigid
than the matrix, then the plate configuration has the lower energy. That is
to say, a spherical inclusion is likely to be stable only if it is stronger (more
rigid) than the surrounding matrix. If it is justified to use Eq. (52) to
estimate the energy of a system of spherical inclusions even when , is not
vanishingly small then one can go even further: this formula, when com-
pared with (44), suggests that a system of spherical inclusions made from
the more rigid material will always have a lower energy than the alternat-
ing plate configuration with the same ,, so that in addition to destabilizing
soft spherical inclusions elastic heterogeneity tends to destabilize all plate-
like inclusions. (A similar argument, based on the energies of elliptical and
ellipsoidal inclusions, is given in ref. 7.)

Secondly, Eq. (47) shows that for an alloy where the more rigid
material also has a larger stress-free volume (the correlation between size
and strength we all remember from the school playground) the space-
averaged strain for plate-like inclusions is a contraction in the direction
perpendicular to the plate and an expansion in the directions parallel to it.
The formation of such an inclusion in the presence of an externally applied
stress tending to make the inclusions thicker will require more energy than
for an external stress tending to make them thinner (see Eq. (10)). Conse-
quently, in such a material, a plate-like inclusion will tend to align per-
pendicular to an externally applied uniaxial compressive stress, but parallel
to an externally applied uniaxial tensile stress. In symbols

text
axial [q][G]>0 O inclusions parallel to axis of applied stress

(55)
text

axial [q][G]<0 O inclusions perpendicular to . . .

1453Modeling of Phase Separation in Alloys



where text
axial=(2text

33 &text
11 &text

22 )�3 is the axial component of the anisotropic
part of the applied stress (taking this axis to be along the 3 axis), which is
positive (negative) for a tensile (compressive) stress.13

These conclusions can be understood physically in the following way:
in the case of a spherical inclusion, the matrix is sheared but the inclusion
is not, so the sphere is a good (low-energy) configuration when the matrix
is very flexible. On the other hand, for a plate-shaped inclusion, only the
inclusion is sheared, and so when the inclusion is very flexible the plate is
a better shape than a sphere. Moreover if, in addition to being softer than
the matrix, the plate has a lower stress-free density, then the matrix will
prevent it from contracting in the direction parallel to the plate; it can only
contract in the direction perpendicular to the plate, and hence the
anisotropic part of the strain is a contraction in this direction, and plate-
like inclusions will be energetically favoured when the stress is tending to
compress them.

2.2.2. The Energy of a Single Inclusion: Isotropic Elasticity.
For most shapes of inclusion other than sphere, cylinder and plate the
calculation of elastic fields is complicated, but Eshelby(229, 227, 223) showed
how to do it for an ellipsoidal inclusion. He found that if the inclusion is
more (less) rigid than the matrix, an ellipsoid has more (less) elastic energy
than a sphere of the same volume. Thus, a spherical inclusion which is
more rigid than the matrix is stable against deformation to an ellipsoid, but
(disregarding the stabilizing effect of the surface energy) one that is is softer
than the matrix is unstable. This result is consistent with the comparison
in the previous section between a spherical inclusion and a plate, which can
be regarded as an infinitely flat ellipsoid. The comparison remains essen-
tially the same if the misfit strain is anisotropic.(34)

The mere fact that one can calculate the energy exactly for an ellipsoid
does not, of course, prove that this is the equilibrium shape, since an
energy calculation alone does not show that the equilibrium condition (27)
is satisfied. Kaganova and Roitburd(156, 148, 139) showed that the ellipsoid
really is the equilibrium shape (and the ellipse in two dimensions), even
when the stress-free strain is anisotropic, and determined the ranges of
parameter values for which it is stable. Later(127) they extended their
analysis to the case where the inclusion (though not the matrix) is elasti-
cally anisotropic.
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If we take surface energy into account as well as elastic energy, the
energy per unit volume of inclusion depends on the size of the inclusion as
well as its shape. This effect was first studied by Khachaturyan and his
collaborators (1973, 1983), (197, 171, 170) for crystals with cubic symmetry.
Their approximate calculations indicated that for inclusions smaller than a
certain size (which depends on the material) the equilibrium shape has
cubic symmetry, whereas for larger inclusions it is plate-like. Johnson and
Cahn (1984) (166) showed that the same symmetry-breaking transition is a
general phenomenon, present even for isotropic elasticity. For small inclu-
sions the surface term F 1 in the free energy formula (2) predominates, and
the shape of the lowest-energy inclusion has the same symmetry as that
which minimizes the surface free energy F 1 for a fixed volume of the inclu-
sion. In the case of an isotropic surface tension this would be a sphere, but
for anisotropic surface tension it could also be a polyhedron facetted
parallel to the crystal planes where the surface tension is minimum. As the
size is increased the elastic energy becomes more important and there is a
transition, which may be either continuous or discontinuous, to a new
equilibrium shape of lower symmetry. If an external stress is present, this
too can induce a shape transition (Berkenpas et al. (1986), (150) Johnson
et al. (1988)(138)).

With a view to constructing a theory of rafting, Pineau (1976)(188)

calculated the energies of single elliptical inclusions in an externally applied
stress field, using methods devised by Eshelby.(223) A brief comparison of
his predictions with experiment is given by Socrate and Parks (1993).(82)

2.2.3. The Energy of Two or More Inclusions: Isotropic
Elasticity. In the absence of elastic forces, the mechanism of coarsening
arises from the fact that a pair of spherical inclusions with given total
volume have less total surface energy the more unequal their sizes. To see
how this mechanism is influenced by elastic forces, we would like to know
how the elastic energy of a pair of inclusions depends on their size and
separation. Can they reduce their elastic energy by transferring material
from one inclusion to another, or by changing their separation?

For isotropic elasticity, calculations of this type were first done by
Eshelby in 1966.(214) For a pair of spherical inclusions with radii R1 , R2

and centres a distance D apart, he found the energy of interaction to be
approximately

Wint=
8?
81 \

1+&
1&&+

2

[q]2 [G] { R6
1R3

2

(D2&R2
2)3+

R6
2 R3

1

(D2&R2
1)3=+O([G])2 (56)

where &=(3K&G)�(6K+2G) is Poisson's ratio and [q], [G] mean
q:&q;, G:&G;, as before. If the inclusions are more rigid than the matrix,
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then formula (56) says that the interaction energy is positive and (for fixed
values of the separation D and the total volume (4?�3)(R3

1+R3
2)) is least

when the two inclusions are of equal size. This suggests that the elastic
energy will tend to make the inclusions of equal size. This stabilizing effect,
just the opposite of the tendency of surface energy to enlarge the large
inclusions at the expense of the small ones, has been given the name
``inverse coarsening.''

In his papers drawing attention to the above stabilizing effect
Johnson(169, 165) used a generalized version of the formula (56) which
included also surface energy and the effect of an external stress. He con-
cluded(169) that, in the absence of external stress, the inverse coarsening
effect would occur whenever the size of the inclusions exceeded a certain
threshold related to the critical size we have called R0 . He also found(165)

that a uniaxial external tensile stress could favour or inhibit inverse coars-
ening depending on the angle between the separation of the inclusions and
the axis of the external stress.

The elastic interaction of more complicated systems of inclusions of
given shape has also been studied; for example Johnson and Voorhees
(1987)(147) consider the elastic interaction energy of a system of several
cuboids (rectangular prisms), finding a tendency of such precipitates to
align, even though the medium is isotropic. Abinandanan and Johnson
(1993)(75, 76) calculated the elastic interaction energy of two spherical inclu-
sions with a tetragonal misfit strain. The energy is positive when the line
joining the particles and the axis of the misfit are parallel, negative when
they are perpendicular.

The value of all such conclusions based on the assumption of spherical
precipitates is, however, called into question by the work of Onuki and
Nishimori (1991).(105) They showed that the interaction energy is extremely
sensitive to the shapes of the inclusions. Equation (56) assumes that the
inclusions are spheres, but a small deformation of the spheres reduces the
interaction to zero. Since there is no reason why the actual precipitates
should be exact spheres, formula (56) cannot be relied on.

Two other calculations using pre-assigned shapes of inclusion are the
energy calculations for a three-dimensional array of inclusions in the shape
of square or rectangular plates by Perovic et al.(181) and the elastic stress
calculations for two-dimensional arrays of square plates by Glatzel and
Feller�Kriepmayer.(124)

2.3. Energy Calculations for Anisotropic Elasticity

In this section we use energy methods to investigate the effect of elastic
anisotropy (usually with cubic symmetry) on coarsening��that is to say,
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the effect of violating condition 3 rather than condition 1 of the Bitter-
Crum theorem. Except where otherwise stated, the material is assumed to
be elastically homogeneous.

2.3.1. The Energy of a Single Inclusion: Anisotropic
Elasticity. Khachaturyan (1966) (215, 170) (see also Roitburd (1967), (212)

Roitburd and Kosenko(189)) showed how to calculate the elastic energy of
an arbitrary inclusion (or indeed an arbitrary system of inclusions), using
the Fourier transform formula (31). This energy is minimized by making
the inclusion a plate (or an array of parallel plates) with faces (the ``habit
planes'') perpendicular to a vector n that minimizes the function B(n)
defined in (37). This configuration obviously satisfies the interfacial equi-
librium condition (27) too. The directions of the minimizing vectors are
called elastically soft directions. For a cubic crystal such as tungsten which
has positive anisotropy, i.e., C11&C12&2C44>0, the elastically soft (mini-
mizing) directions are [111], [111� ] etc.; for negative anisotropy, as in Al,
Cu, Fe, Ni, they are [100], [010] and [001]. Analogous calculations for
non-isotropic inclusions are given in ref. 176.

The elastic energy of some other shapes of inclusion can also be found
analytically, for example spheres, ellipsoids, (208, 209) and cubes.(185, 170) If the
strain in the inclusion is uniform (i.e., for all these shapes except the cube),
the energy can also be calculated for a material which is elastically
heterogeneous as well as anisotropic(187) (see Section 8.4 of ref. 170).

When surface energy is taken into account, the minimum-energy shape
of the inclusion is no longer a plate; moreover, as noted in our discussion
of the isotropic case (Section 2.2.2), the minimum-energy shape depends on
the size of the inclusion. The (effectively) two-dimensional calculations of
Khachaturyan and Hairapetyan(197, 170) illustrate how the minimum-energy
shape, round when the inclusion is very small, can pass through a succes-
sion of more and more needle-like shapes as the inclusion is made larger.
For a crystal with square symmetry, as the size of the inclusion is increased
there is a transition from minimum-energy shapes with fourfold (square)
symmetry to ones with twofold symmetry.(73, 39) (Symmetry-breaking trans-
itions of a similar kind occur for isotropic elasticity: see Section 2.2.2).

In three dimensions, the minimum-energy shape is more difficult to
compute; a common procedure has been simply to compare the energies of
various easily calculable shapes such as spheres, ellipsoids, cubes, cuboids,
tetrahedra and octahedra and to assume that the actual shape at a given
volume of inclusion will be similar to the easily calculated shape having the
least energy. Such calculations(141, 128, 124, 91) show that the precipitate may
pass thorough a variety of different minimum-energy shapes as its size is
increased, and may even split into two or more smaller pieces. As we have
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mentioned in Section 1.2.1, splitting of this kind has been observed experimen-
tally with #$ precipitates in nickel-base and other superalloys:(174, 158, 128, 71)

see Fig. 4. A review of all such energy calculations up to 1992 is given by
Johnson and Voorhees.(88, 87)

The effect of an externally applied stress on the energy-minimizing
shape of an ellipsoidal inclusion with elastic forces only, a key factor in the
theory of rafting, was studied by Chang and Allen (1991), (99) following
earlier theoretical work by Tien and Copley (1971), (202) Pineau (1976)(188)

(mentioned in Section 2.2.2 above), Miyazaki et al. (1979), (180) Johnson
(1987)(146) (who showed that the true equilibrium shape could be
approximated by an ellipsoid of revolution), and Johnson et al. (1988)).(138)

Using realistic elastic constants, Chang and Allen find good agreement with
observed shapes and orientations. Their article also contains a good critical
review of the earlier theoretical work on rafting. Nabarro et al. (1996) (36)

consider a cubic crystal with inclusions having the shape of tetragonal
prisms instead of ellipsoids, and they find that Eq. (55) holds, with the shear
modulus G replaced by its analogue for a cubic crystal, which is (see the
paragraph after (47)) (C11&C22)�2 if [100] is a soft direction.

The restriction of working within a pre-selected set of shapes (spheres,
cuboids, etc.) is avoided in the work of McCormack et al. 1992(90) who do
an unusual type of two-dimensional finite-element computation in which,
as the size of the inclusion is increased, its shape follows a path of steepest
descent with respect to energy, not even requiring the topology to stay the
same. As the size of the inclusion is increased, the round shape first turns
into a square, and later on a nucleus appears inside the square (or on the
surface if the calculation forbids changes of topology) and the square splits
into two or four. More recently Schmidt and Gross(56, 25) using a boundary
integral method to solve the equilibrium equation (27) for a cubic crystal,
studied the dependence of the shape of the inclusion not only on its size but
also on the misfit strain (assumed purely dilataional) and various elasticity
parameters. The most important of these turned out to be the ratio of the
rigidities of the inclusion and the matrix. When the inclusion is less rigid
than the matrix, its faces (if it is large enough) can be partly concave; also
it can become unstable against elongation.

2.3.2. The Energy of Several Inclusions: Anisotropic
Elasticity. As in the case of isotropic elasticity, we study pairs of inclu-
sions in order to understand when inverse coarsening can take place, and
if it does what relative position of the inclusions gives the least energy.
In addition, there is the possibility we have already mentioned (see Fig. 4)
that a single inclusion may be able to reduce its energy by splitting into
two (or more) parts.
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Several authors have,studied these questions by investigating the
energy of a pair of spherical inclusions. Johnson and Lee (1979)(179) show
that two spherical inclusions in an anisotropic matrix can reduce their
energy if they come close together and align themselves along the ``soft''
crystal directions. Miyazaki, Doi and others(154, 86, 80) find in addition that
inverse coarsening is possible if the particles are close together and the
misfit strain and particle size are large enough. Shneck et al. (1992)(93) give
details of the elastic fields for one and two spherical inclusions in a cubic
crystal with negative anisotropy.

Inclusions shaped like cubes and cuboids have also been studied,
because of their relevance to the observed splitting of such inclusions in #$
precipitates. Doi et al. (1984)(163) showed that a single cuboid may have
more elastic energy per unit volume of precipitate than an array of eight
cuboids, or a pair of parallel plates. Khachaturyan et al. (1988) (141) com-
pare the energy of a cube-shaped inclusion, in a cubic crystal having
negative anisotropy, with that of two half-cubes and with an octet of
smaller cubes. Depending on the distances involved, either the doublet or
the octet can have lower energy than the single cube.

The most up-to-date calculations are those of Schmidt et al.(15) who
calculate the true minimizing configuration and take into account the
possibility of elastic heterogeneity. Contrary to the homogeneous case, the
elastically heterogeneous two-inclusion system can have an energy mini-
mum, implying the possibility of inverse coarsening.

2.3.3. Positional Correlations. We have already noted that a
pair of inclusions of given shape often has the least energy if the inclusions
are close together and are aligned along an elastically soft direction. The
same tendency was found in arrays consisting of a large number of inclu-
sions, by Khachaturyan and his collaborators.(207, 170, 195) They found, for
example, that in a cubic alloy with negative anisotropy the minimum-
energy array for a system of spherical inclusions is a simple cubic super-
lattice.

3. THE DYNAMIC SHARP-INTERFACE MODEL

3.1. Modelling Diffusion

The dynamic version of the sharp-interface model differs from the
static version in taking account of the mechanism of time evolution, which
is diffusion. Since diffusion arises from concentration gradients, we drop the
assumption made in the static version of the sharp-interface model that the
intrinsic properties of the alloy are uniform in each phase. The composition

1459Modeling of Phase Separation in Alloys



of the alloy will now depend on position; but the elastic stiffness matrix
and the stress-free strain tensor will still be assumed uniform within each
phase, though in general different in different phases.

For simplicity, let us assume that the alloy consists of just two types
of atom, A and B, so that the local composition of the alloy can be
described by a single field, the local concentration of A atoms, which we
denote by c. We shall assume that the concentration of A atoms in the ;
phase is small so that c is small in the ; phase. In the : phase, we assume
that c is close to its zero-temperature equilibrium value in that phase which
we denote by c:

0 . If the : phase is pure A, then c:
0=1, but it is also possible

for c:
0 to be less than 1; for example in an Ni-Al alloy the precipitates have

a Ni3 -Al structure so that for this alloy the equilibrium concentration of Al
atoms in the precipitates is c:

0=1�4.

3.1.1. The Diffusion Equation and Its Boundary Condi-
tions. Within each phase, the concentration varies with time by diffu-
sion, which we can model by the standard diffusion equation14

�c
�t

={ } (D{c) (57)

For simplicity, we shall take the diffusivity D to be uniform in each phase,
though it may take different values in different phases.

The motion of the interface is controlled by the net rate of arrival of
A atoms, in accordance with the standard mass conservation formula
associated with (57),

vn[c]=&[Dn } {c] (58)

where n is a unit vector normal to 1 and vn denotes the velocity of 1 (with
respect to the undistorted lattice) in the direction of n.

To use these equations we need two conditions to determine the values
of c on the two sides of 1. Since these conditions are also satisfied at equi-
librium, we can obtain approximations to them by formulating the two
conditions that must be satisfied on 1 at equilibrium. One of these condi-
tions refers to the possibility of mass transfer across 1, the other to the
possibility of motion of 1 relative to the underlying lattice.

The condition for equilibrium under mass transfer across 1 is that the
chemical potentials of the two kinds of atoms on the two sides should be
equal. Denoting the chemical potential of A relative to B (i.e., the excess of
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the chemical potential of A over that of B) by +, we can write this condi-
tion

+:=+; on 1 (59)

where +: (or +;) denotes the limiting value of + at any point on 1 as that
point is approached from within the : (or ;) phase.

If the system is not in equilibrium, extra terms may appear in (59)
depending, for example, on the velocity of the interface (corresponding to
the kinetic undercooling term in the theory of freezing and melting).
We shall assume here, however, that the deviation from equilibrium is
small enough to justify neglecting such terms.

In defining the chemical potentials which appear in (59), we must take
account of the elastic contribution to the free energy, defining it as the
derivative of the total free energy with respect to particle number at con-
stant strain. However, since we are taking the stiffness matrix and the
stress-free strain to be independent of concentration in each phase, it
follows from the formula (5) for the strain energy that the elastic contribu-
tion to the free energy does not affect the chemical potential. The formula
giving the chemical potential (of A relative to B) is therefore just the same
as it would be in the absence of elastic energy:

+(c)=
df (c)

dc
(60)

(If temperature variations were of any importance, we would of course
write (�f��c)T , but ln a metal it is reasonable to treat all processes as
isothermal.)

To obtain our second condition, we consider the condition for equi-
librium under displacements of the interface. This can be obtained by
requiring the total free energy to be a minimum with respect to variations
of 1 subject to the constraint that the number of A particles, denoted here
by NA, is fixed:

NA=|
0

c d3x=const. (61)

The argument closely follows the corresponding one in Section 2.1.2, with
the constant-volume constraint used there (see Eq. (22)) replaced by (61),
and the resulting necessary condition for a minimum, analogous to (27), is

2_}+[ f +w]&:
ik

T i[u i, k] nk=+[c] (62)
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where [c]=c:&c; is the discontinuity in c across the interface. We have
denoted the Lagrange multiplier by + in accordance with the general
princple that the Lagrange multiplier is equal to the derivative of the mini-
mum value with respect to the value of the constraint, which in this case
is dF�dNA, i.e., the chemical potential +. At equilibrium, +, +: and +; are
all the same, and as in the case of Eq. (59) we shall make the approxima-
tion of neglecting any non-equilibrium terms in (62), proportional to, say,
the velocity of 1, even when the system is not in equilibrium.

The condition (62) (without the curvature term) appears to be due to
Robin(196) and, in greater generality, to Larche� and Cahn (1978).(184) The
elastic terms in this equation are part of what Eshelby(206, 190) calls the
``energy-momentum tensor.'' The curvature term, which incorporates the
Gibbs�Thomson effect, was included by Cahn and Larche� (1982), (172)

following earlier work by Gurtin and Murdoch (1975)(191) on surface
stresses in solids.

3.1.2. The Generalized Gibbs�Thomson Condition. Equa-
tion (62) can be brought to a more convenient form, generalizing the
Gibbs�Thomson formula. For each phase we introduce (following Larche�
and Cahn (1973)(198)) a thermodynamic potential ?, the grand canonical
pressure, referring to the properties of this phase at zero stress. Considered
as a function of c, it is defined by

?(c)=c+(c)& f (c) (63)

so that

d?(c)
dc

=c
d+
dc

(64)

The interface condition (62) can now be written

[?]=2_}+[w]&:
ik

T i[u i, k] nk (65)

where [?] means ?:&?;, that is ?(c:)&?(c;).
To obtain convenient approximate formulas for + and ?, consider first

their values at the type of equilibrium normally considered in ther-
modynamics, for which the interfacial curvature is small and the lattices in
the two phases are incoherent, so that surface and elastic energies play no
part in the equilibrium conditions. At such an equilibrium Eq. (59) shows
that there will be a common value of +: and +;; denote this common value
by +eq . Moreover, Eq. (65) reduces in this case to [?]=0; that is to say,
?: and ?; have a common value at such an equilibrium. Denote this
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common value by ?eq , and the values of c in the two phases at such an
equilibrium by c:

eq and c;
eq .

By Taylor's expansion about this point of incoherent equilibrium (and,
in the second line, the use of (64)), we have the following approximations
which are useful in the : phase:

+(c:)=+eq++$(c:
eq)(c:&c:

eq)+O(c:&c:
eq)2 (66)

?(c:)=?eq+c:
eq+$(c:

eq)(c:&c:
eq)+O(c:&c:

eq)2 (67)

where the prime denotes a derivative with respect to c. There is a similar
approximation for the ; phase. It follows from (66) and (67) that

?(c:)=?eq+c:
eq(+(c:)&+eq)+O(+(c:)&+eq)2 (68)

From this we can subtract the corresponding formula for ?(c;), and using
also the condition (59) in the form +(c:)=+(c;), we obtain

[?]=[ceq](+&+eq)+O(+&+eq)2 (69)

where + denotes the common value of +(c:) and +(c;). Re-arranging (66),
and then using (69), we get the approximate formula

c:&c:
eq=

+&+eq

+$(c:
eq)

=
[?]

[ceq] +$(c:
eq)

(70)

in which [?] is to be evalueated from (65).The formula for c;&c;
eq is

analogous.
For the model alloy we are considering here, the chemical potential

can be expanded in virial-type expansions about the two points c:
0 and c;

0 .
If we take c;

0 to be zero for simplicity, and in a case such as Ni3Al neglect
the small concentration of minority atoms on the sites preferred by
majority atoms, these expansions have the form

exp
+(c)&+eq

kT
=

c
c;

eq

[1+O(c)]

(71)

exp
+eq&+(c)

kT
=

c:
0&c

c:
0&c:

eq

[1+O(c:
0&c)]

where k is Boltzmann's constant and T is the temperature. The reason why
+(c) appears with a negative sign in the second equation is that in the :
phase the small parameter of the virial expansion is c:

0&c, the concentration
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of B atoms, and the relative chemical potential of these atoms is &+(c). Using
(71) in (70), we obtain the approximate formulas

c:=c:
eq+

(c:
0&c:

eq)[?]

kT[ceq]
, c;=c;

eq+
c;

eq[?]

kT[ceq]
(72)

in which [?] stands for the expression on the right side of (65). An exam-
ple showing how the differential equation and boundary conditions for-
mulated in this section are used is given in the following section.

The formula (72), reducing in the absence of elastic effects to the
Gibbs�Thomson formula, is due to Leo and Sekerka(130) (see also refs. 144,
75, 39). Earlier, Johnson and Alexander(152) had obtained a similar equa-
tion and used it to calculate c at the surface of a spherical inclusion with
isotropic elasticity.

3.2. Sharp-Interface Evolution Calculations

3.2.1. Growth or Shrinkage of an Isolated Spherical Inclu-
sion. In this section we calculate (following Laraia et al.(142, 129)) the rate
of growth of a spherical inclusion of radius R in an infinite elastically
isotropic matrix, with the boundary condition that c approaches a
prescribed limit c� far from the inclusion. At the surface of the inclusion
its value is given by (72). The calculations are simple because the geometry
makes [?], and therefore c: and c;, independent of position on 1.

We make the approximation (which appears to be a good one if
R dR�dt<<D) of neglecting the time derivative in the diffusion equation
(57), so that it reduces to Laplace's equation. The appropriate solution,
with origin at the centre of the sphere, is

c={c:

c�+(c;&c�) R�r
(r<R)
(r>R)

(73)

where r means |x|. Using (58) we find the rate of growth of the inclusion
to be

dR
dt

=vn=
D

[c] _
dc
dr&r=R

=&
D(c;&c�)

[c] R
r &

D(c;&c�)
[ceq] R

(74)

If there are no elastic forces, then (65) reduces to [?]=2_�R, and so, using
(72) to evaluate c;, we obtain

dR
dt

r
2_Dc;

eq

kT[ceq]2 R \ 1
R*

&
1
R+ (75)
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where R*, defined by (c�&c;
eq)=2_c;

eq�kT[ceq] R*, is the so-called criti-
cal radius, the radius of an inclusion at whose surface the value of c; would
be c�.

If elastic forces are present, then Eq. (65) can be evaluated using the
R2 � � limit of the solution for a spherical inclusion outlined in Sec-
tion 2.2.1. The result is

[?]=2_�R+18K:G;[q]2�(3K:+4G;) (76)

Equation (75) still holds, with R* now defined by

2_�R*=kT[ceq](c�&c;
eq)�c;

eq&18K :G;[q]2�(3K:+4G;) (77)

Equation (75) is a central component of the LSW theory of coarsening
at very low volume fractions of precipitate, which we have already men-
tioned in Section 1.2.2 and shall discuss further in Section 3.2.4. In that
theory each precipitate has its own value of R, which changes with time
according to Eq. (75). The common value of R* is determined by requiring
the total volume of the precipitates to be conserved. LSW argue that both
R* and the average radius of the precipitates will grow in proportion to
t1�3. Since Eq. (75) is unaffected by the presence of the elastic term in (76)
it follows(129) that the elastic term has no effect whatever on the coarsening
behaviour as predicted by the LSW theory. The elastic effects will be
revealed only by going beyond the main assumptions made in the above
calculation, which are that the elasticity is isotropic, the precipitates are
spherical, and their volume fraction is very small.

3.2.2. A Single Nonspherical Inclusion. We have already seen
in Section 2.2.2 that a spherical inclusion, with isotropic elasticity, can be
thermodynamically unstable if it is softer than the matrix. If the inclusion
is growing, a further instability becomes possible, corresponding to the one
discovered by Mullins and Sekerka(219) for the non-elastic case; it appears
as soon as a certain critical radius (which depends on the rate of growth)
is exceeded. This type of instability has been investigated using linear
theory by several authors.(118, 131, 106, 78)

The first application of the sharp-interface model to nonlinear time
evolution of the shape of a precipitate was a two-dimensional calculation
by Voorhees, McFadden and Johnson (1992), (95) using a boundary integral
method to solve the diffusion equation in the matrix (they neglected
diffusion inside the precipitates). They calculated the shape evolution of
a single precipitate of arbitrary initial shape for an anisotropic system
having the elastic constants of Ni-Al, choosing the concentration at infinity
so that the volume of the precipitate remained constant as it approached
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an equilibrium shape. In contrast to the energy calculations described in
Section 2.3.1, they did not find any symmetry-breaking transitions: the
equilibrium shape always had fourfold symmetry even if the initial shape
did not, and their precipitates never split into pieces; they attribute this to
their not having considered such large precipitates (i.e., such large values of
R�R0) as the other workers.

Jou et al. (1997) (18) did similar calculations, but they used isotropic
elasticity and chose the concentration at infinity so that the precipitate
would grow at a prescribed rate. The mass influx has a big effect on the
shape, favouring the formation of dendrites both for relatively hard and
relatively soft precipitates, whereas the equilibrium shapes are ``squarish.''
If there is an external stress field, the dendrites perpendicular and parallel
to the axis of this field grow at different rates.

3.2.3. Two or Three Precipitates. When studying more than
one precipitate, or even a single precipitate in three dimensions, it is a com-
plicated task to follow the detailed evolution of the boundary surfaces.
To avoid the difficulty, some authors constrain the precipitates to be
spherical, determining the rate of change of the size and position of each
sphere from appropriate integrals of Eq. (58) over the surface of that
sphere. Voorhees and Johnson (1988), (145) also Johnson et al. (1989), (126)

studied two spherical precipitates in an isotropic matrix, solving the diffu-
sion equation in the matrix using bispherical coordinates. For precipitates
that are softer than the matrix, they find inverse coarsening if the ratio of
the particle radii is less than about 2. Diffusion also makes the centres of
the precipitates move; they move in the non-elastic case too, but here the
movement is faster. Johnson et al. (1990) (114) extend this type of calculation
to anisotropic elasticity. They find inverse coarsening when the precipitate
separation is along a soft direction, but coarsening rates are enhanced for
some other directions of the separation.

Getting away from the assumption of spherical precipitates, Su and
Voorhees (1996) (39, 40) did 2-D calculations for a pair (or triplet) of inclusions
in a matrix with cubic symmetry, allowing for shape changes (but not for
diffusion inside the precipitates). Large precipitates adopted approximately
rectangular shapes, rather than the round ones assumed in fixed-shape
calculations. Inverse coarsening was never observed for two-precipitate
systems (notwithstanding the results of earlier calculations at fixed shape);
in systems of three precipitates, local inverse coarsening was observed but
it was never enough to stabilize the system as a whole against further
coarsening. With regard to the movement of the precipitates, the main
effect of the elastic forces was to align pairs of precipitates so that the line
joining their centres was along one of the elastically soft directions. These
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forces also caused the precipitates to move close together (partly by motion
of their centres, partly by shape changes), but not to touch. In discussing
these results the authors make use of the concept of configurational forces
due to Eshelby(233) and Gurtin.(3)

3.2.4. Many Precipitates: The LSW Theory. The first theory
of coarsening, which took no account of elastic interactions, was the LSW
theory, which we have already outlined in Section 3.2.1. This theory, which
assumes that the volume fraction of precipitates is vanishingly small,
predicts that the average radius of the precipitates present at time t will
grow in proportion to t1�3; and, as we have seen, this conclusion is unaffected
by the elastic energy (assumed isotropic).

For finite volume fractions the simple LSW theory becomes inaccurate
because the precipitates are no longer independent. The predictions of the
theory can be improved upon by following numerically the individual sizes
of a sample system of precipitates which are assumed to be spherical (for
reviews, see Voorhees(161, 96)). Enomoto and Kawasaki (1988,1989)(140, 122)

carried out numerical simulations of this type in which the effect of
isotropic elasticity was included by means of Eshelby's formula (56) for the
elastic interaction between two spherical inclusions. The diffusion potential
at the surface of an inclusion was replaced by an average value over that
surface, calculated in terms of the partial derivative of the total free energy
with respect to the radius of the inclusion. For precipitates that were har-
der (i.e., more rigid) than the matrix, they found that the elastic interaction
assisted the coarsening mechanism and indeed speeded it up so that the
average radius eventually grew in proportion to t1�2 instead of t1�3; at the
same time, the distribution of particle sizes became broader than that
predicted by LSW. On the other hand, if the precipitates were softer than
the matrix, the elastic interaction was found to slow down the coarsening
or even stop it altogether, and the distribution of particle sizes became
much narrower than that of LSW (another manifestation of inverse coars-
ening).

A serious disadvantage of the simulations of Enomoto and Kawasaki
is that they depend on Eshelby's formula (56) for the elastic interaction,
which in turn depends on an assumpton that the precipitates are spherical.
As pointed out by Onuki and Nishimori (1991)(105) (see Section 2.2.3
above) if the precipitates are allowed to change their shape, the interaction
energy may deviate greatly from this formula and so these simulations do
not even convincingly establish the t1�2 growth law.

Shortly after these simulations were done Leo et al.(115) gave a general
scaling argument leading to the conclusion that when the precipitates are
large enough for the surface tension to be unimportant the average linear
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size of the precipitates will indeed grow in proportion to t1�2. Their argu-
ment is based on the same idea as one given by Mullins and Vin~ als(155, 133)

which predicts a t1�3 growth law for the case where there are no elastic
forces. The main assumption used in this argument is that the domain
structure is statistically self-similar, i.e., that at any time it has the same
statistical properties as the one obtained by a uniform expansion of the
domain structure at any earlier time. However, in contrast to the
capillarity-dominated case, where there is plenty of evidence for the statisti-
cal self-similarity hypothesis and the t1�3 law is well-established, in the case
where elastic forces dominate there appear to be many cases, particularly
for anisotropic materials, where the hypothesis of self-similarity is false. For
example, the hypothesis would require the equilibrium shape of a single
inclusion to be independent of its size, but for anisotropic elasticity this is
not so (see Section 2.3.1 above). The scaling argument does, however, tend
to confirm the t1�2 growth law found by Enomoto and Kawasaki for spheri-
cal precipitates which were harder than the matrix.

Another feature of coarsening that has received much attention in the
nonelastic case is the positional correlations. For the elastic case, the first
study of positional correlations using the sharp-interface method was done
by Abinandanan and Johnson (1993). They calculated(75, 76) the concentra-
tion field in a three-dimensional isotropic matrix containing spherical
inclusions, using a multipole expansion method. (For an alternative to the
multipole expansion method, see ref. 66). Unlike Enomoto and Kawasaki,
they took the elastic stiffness matrix to be homogeneous, but they avoided
the Bitter-Crum theorem by making the misfit strain tetragonal rather than
isotropic. They obtained the effect of diffusion in the matrix (though not
inside the precipitates) not only on the sizes of the precipitates but also on
their velocities. The resulting formulas were used in a simulation of the
time evolution of a system of spherical precipitates whose initial positions
and sizes were chosen from a random distribution. In the final configura-
tion, the positions of most of the surviving precipitates were strongly
correlated: arranged in a plane perpendicular to the axis of the tetragonal
misfit strain if the axial component of the anisotropic part of the misfit
strain was an expansion, but in lines parallel to the misfit strain axis if this
component of the misfit strain was a compression. In a later paper(43)

Abinandanan and Johnson discuss the development of spatial correlations
during coarsening. For small particles, capillary forces dominate and the
particles hardly move; the spatial correlation is that each relatively large
particle is surrounded by a depletion zone from which it has eaten most
of the solute material. For large particles, elastic forces dominate and the
particles do move, setting up a new system of correlations characterized by
clustering of favourably oriented similarly sized particles.
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Hort and Johnson (1996)(32) simulate the time evolution of a system of
spherical precipitates in the presence of a uniaxial applied stress, both for
homogeneous elasticity with tetragonal misfit strain and for heterogeneous
elasticity with isotropic misfit strain. The precipitates are found to align
themselves in a way that is consistent with Eq. (55).

All the calculations mentioned so far in this section depend on the
(dangerous) simplifying assumption of spherical precipitates. Jou et al.
(1997)(18) do two-dimensional calculations which do take shape changes
into account, using the boundary integral method mentioned in Section
3.2.2. Their calculations refer to an elastically isotropic but heterogeneous
material. Complicated effects are observed: alignment, movement, co-
agulation, coarsening, with everything depending strongly on the
amount of elastic inhomogeneity, the misfit strain, and the externally
applied field.

4. DIFFUSE INTERFACE MODELS

In this type of model we no longer represent the phase boundary as
a geometrical surface. Instead, the micro-structure of the interface is itself
included in the model. The concentration c(x, t) of the A-component is
now treated as a function of position x and time t which is continuous
throughout the whole of 0. The surface 1 and the domains 0: and 0; play
no part in the mathematical formulation of these models, though it may be
possible to identify them approximately once the concentration field is
known. In particular, at late stages of the coarsening process, large
domains develop in which c is almost uniform, being close to one or other
of the equilibrium values c:

eq and c;
eq defined in Section 4.2; these domains,

which are the analogues in this model of the domains 0: and 0; used in
the sharp-interface model, are separated by a relatively thin transition layer
whose thickness does not change with time, and which is the analogue of
the geometrical surface 1 in the sharp-interface model.

An advantage of the method is that it gives information about the very
early stages of spinodal decomposition, before any well-defined interfaces
have formed.(222) For the late stages, it has further advantages: no a priori
assumption about the topology of the interface need be made��this topol-
ogy is determined by the evolution of the model itself��and in numerical
work the difficult problem of dealing with moving free boundaries is
avoided. Moreover, even when the topology does not change, the rather
complicated conditions on the surface of 1 need not be allowed for
explicitly.
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4.1. The Cahn�Hilliard Equation and Some of Its Relations

4.1.1. The Cahn�Hilliard Equation. The diffuse-interface method
was introduced in Cahn's celebrated paper about spinodal decomposition
(1961).(222) He based his initial discussion on a formula, due originally to
van der Waals, (237) for the free energy of a non-uniform system without
elastic energy

F=|
0

[ f (c)+ 1
2/({c)2] d 3x (78)

Here c (meaning c(x, t)) is the concentration field, assumed to be a con-
tinous (indeed differentiable) function of position; f (c) is the free energy
density of the material at concentration c; and / is a positive constant, so
that the gradient term penalizes rapid spatial variations of c. For the
approximations underlying this model to work, the length scale of these
spatial variations should be large compared with the interatomic distance.
In particular, the value of c(x) at a given point x hardly depends on
whether the atom nearest the point x is of type A or type B; rather, it
represents the concentration of solute particles averaged over a region
centred at x which is large enough to contain many particles.

To include phase transitions in the model, the function f is assumed to
have a non-convex graph, as illustrated in Fig. 6. For example the
approximation to f given by the mean-field theory of a binary substitu-
tional alloy,

f (c)=+eq c+2kT0c(1&c)+kT[c log c+(1&c) log(1&c)] (79)

where +eq and T0 are constants, has a non-convex graph when T<T0 .

Fig. 6. A typical free-energy density function f.
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For the time dependence of c, Cahn assumed

�c
�t

={ } \M{
$F

$c(x)+ (80)

where M is a mobility coefficient, which may depend on c, and $F�$c(x) is
the variational derivative of F with respect to c(x). The variational
derivative is defined by the condition that

|
0

$F
$c(x)

,(x) d 3x=\dF(c+=,)
d= +==0

(81)

for all differentiable functions , which vanish on the boundary of 0. With
F given by (78) this definition gives

$F
$c(x)

= f $(c(x))&/{2c(x) (82)

where f $(c) denotes the derivative of f (c), the same thing as the local
chemical potential used in Section 3.1, and so (80) becomes

�c
�t

={ } M{( f $(c(x))&/{2c(x)) (83)

This is the Cahn�Hilliard equation, which is the cornerstone of the theory
of spinodal decomposition without elastic interactions. If the formula (79)
is used for f, M is generally taken to be Dc(1&c)�kT where D is the dif-
fusivity (assumed for simplicity to be independent of c��compare Eq. (57)),
so as to make (83) reduce to Fick's law when c(1&c) T0 �T and / are
small.

Equation (83) is to be solved with boundary conditions modelling the
conditions at the surface of the material, and initial conditions modelling
the initial concentration distribution. For example, to represent an alloy
quenched from a high temperature to a point inside the miscibility gap of
the phase diagram, c(x, 0) is generally taken (see, for example, ref. 119) to
be c� +`(x), where c� =N A�|0| is the space-averaged concentration of A
atoms and ` is a spatially random function representing small concentra-
tion fluctuations. If the uniform state c(x)=c� is unstable (see Section 4.2
below) these fluctuations grow with time, eventually producing concentra-
tion distributions very similar to the ones that are observed experimentally
in spinodal decomposition if elastic interactions are unimportant.

For many alloys, further order parameters besides the concentration are
necessary to characterize the phase transition completely. The prototype of
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such situations is the order-disorder transition at constant concentration,
as in Cu-Au, where at low temperatures each kind of atom prefers one of
two sublattices of a body-centred cubic lattice. The mathematical model
uses an order parameter field '(x) which is the local concentration of (say)
Cu atoms on one of the sublattices. The free-energy functional has the form
(78) with ' replacing c, but since ' does not obey a conservation law the
kinetic equation is not (80) but the Allen�Cahn(178) equation

�'
�t

=&4
$F

$'(x)
(84)

(also known as the time-dependent Ginzburg-Landau equation) where 4 is
a kinetic coefficient, which may depend on '. In general, both the concen-
tration field and one or more order parameter fields will appear in the free-
energy functional, the concentration obeying an equation of the form (83)
and each non-conserved order parameter obeying an equation of the form
(84).15

A further refinement of these equations, which makes it possible to
allow for fluctuation effects such as nucleation, is to include noise terms
on the right sides of (83) and (84). This development was initiated by
Cook.(204) The resulting equations might be called the stochastic Cahn�
Hilliard and stochastic Allen�Cahn equations. For further information
about their use in physics see the reviews by Gunton et al.(167) or Gunton
and Droz.(168) On the mathematical side, it is known that the stochastic
Allen�Cahn equation with space-time white noise has a solution (indeed a
unique solution) in one dimension, but in more than one dimension it
appears that a solution exists only for coloured noise (with power spectrum
falling off sufficiently rapidly at large wave numbers). The stochastic Cahn�
Hilliard equation, on the other hand, appears to have a solution for white
noise in up to three dimensions.(157, 5)

4.1.2. Including Elastic Energy in the Cahn�Hilliard Equa-
tion. The free energy formula (78) can be generalized to include elastic
interactions if we introduce a new field variable u(x) and replace f by f +w
just as we did in (2). In order for the elastic interaction to have any effect,
however, we must allow *ijmn and�or e0

ij to depend on c, so that the elastic
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energy density w now depends on c as well as the strain. The free energy
formula thus becomes

F[c( } ), u( } )]=|
0

[ f (c(x))+w(c(x), e11(x),...)+ 1
2/({c(x))2] d 3x (85)

with w(c, e11 , e12 ,..., e33) given by the formula (5), as before. The c-depen-
dence of w arises from the possibility that *ijmn and e0

ij may depend on c.
The functions f and w in (85) are defined in just the same way as for

the sharp-interface model (see Eq. (2)); that is, f (c) is the free energy den-
sity of the bulk material when the concentration is c and the (macroscopic)
elastic stress is zero, and w is defined so that f +w is the total free energy
density of the bulk material. We shall continue to call w the elastic energy,
but it might better be called the macroscopic elastic energy, since part of
the c-dependence of f (c) arises from microscopic elastic effects which are
not visible on the macroscopic scale. Thus, if the A and B atoms are of dif-
ferent sizes, then when some of the atoms in an initally pure B lattice are
replaced by A atoms the B lattice will be locally distorted, increasing its
energy quite apart from any chemical interactions between the two kinds
of atom. This type of microscopic interaction was first studied by
Eshelby(231) and its role in the microscopic theory of solid solutions was
developed by Khachaturyan.(211, 170)

Cahn's recipe (80) now gives, in place of (83), the generalized diffusion
equation

�c
�t

={ } M{ \ f $(c(x))+
�w(c(x), e11(x),...)

�c
&/{2c(x)+

={ } M{( +̂&/{2c(x)) (86)

where +̂ is the diffusion potential, a function of c and e11 , e12 ,... defined by

+̂=
�( f (c)+w(c, e11 , e12 ,...))

�c

=+(c)+
1
2

:
ijmn

d* ijmn

dc
(2e) ij (2e)mn& :

ijmn

* ijmn(2e) ij
de0

mn

dc
(87)

according to the formula (5) for w. Equation (86), without the gradient
term, is due to Larche� and Cahn.(173) The complete equation was given by
Onuki (1989).(134)

In using Eq. (86) the elastic field variable u is assumed to relax to its
equilibrium value much faster than the concentration, and therefore it is
determined, just as in the sharp-interface model, by minimizing F. The
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Euler�Lagrange equation for the minimization is, as in the sharp interface
model, Eq. (11). In consequence of this minimization, the strain at each
point in the material is a (non-local) functional of the entire density profile
c( } ) and so the diffusion potential at that point is likewise such a func-
tional. For an example, see Eq. (91) below.

As in the sharp interface model, the minimization to find u is easiest
for periodic boundary conditions, with the elastic stiffness tensor taken to
be independent of c and therefore uniform so that the Fourier transform
formula (38) can be used. A convenient way to allow for the dependence
of stress-free strain on concentration in this formula is to assume a linear
relation analogous to Vegard's law:

e0
ij=aij+bij c (88)

where aij and bij are consants which can be expressed in terms of the quan-
tities e:

ij , c:
eq etc. used in Chapter 3. By substituting this into Eq. (38) and

using the result in (85) we can express the free energy as a functional of the
field c alone:

F[c( } )]=|
0

[ f (c(x))+ 1
2/({c(x))2] d3x

+ 1
2 ||

0
(c(x)&c� ) Vel (x&y)(c(y)&c� ) d3x d3y (89)

where c� is the space average of c, and Vel is defined by

Vel (z)= :
ijmn

b ijHijmn(z) bmn (90)

(a function whose spatial average is zero). Apart from a numerical factor
[ceq]&2, Vel is the inverse Fourier transform of the function B in
Khachaturyan's formula (36). When F is given by (89) the diffusion poten-
tial at x is the functional derivative of the non-gradient part of F with
respect to c(x), i.e.,

+̂(x)=+(c(x))+|
0

Vel (x&y)(c(y)&c� ) d3y (91)

where +(c)= f $(c) is the chemical potential as in (60). The non-local
character of the diffusion potential is evident from (91).

To obtain information about coarsening from such models, one must
integrate (86) over long time intervals. Methods of integrating the non-elastic
version of this equation are reviewed in ref. 121. The elastic calculation is
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a formidable one, particularly in three dimensions, since to find �w��c the
equation of elastic equilibrium (11) must be solved at each time step��
either as a partial differential equation in position space, or (if the elastic
constants are independent of concentration) by the Fourier transform for-
mula (31) or an equivalent position-space formula such as the convolution
integral in (91). Until recently it was not possible to calculate time evolu-
tion from these equations with any accuracy in a reasonable time, and
inaccurate or uncertain methods had to be used instead;(143, 123) but more
reliable methods are now becoming available.(2, 8)

In the limit where / � 0, with a suitable concurrent re-scaling of the time
variable, the Cahn�Hilliard equation (83) converges to the non-elastic ver-
sion of the dynamic sharp-interface equations, formulated in Chapter 3.1.
This was shown formally by Pego(136) and rigorously by Alikakos et al.(63)

The corresponding convergence problem for the elastic version, Eq. (86), is
treated by Leo et al. (1998).(8)

4.1.3. Lattice Differential Equations. The Cahn�Hilliard equa-
tion does not take explicit account of the lattice structure of the crystal. In the
case where the elastic stiffness tensor is uniform, it is possible to take account
of this lattice structure, without departing from the general philosophy of the
method, if we replace the integral in (89) by a sum over N lattice sites p
situated at positions xp in the periodic box 0, so that the free energy func-
tional F is approximated by a function of the N variables cp =c(xp ):

F=
|0|
N

:
p

f (cp )+
|0|2

2N2 :
p

:
p$

V(p&p$)(cp &c� )(cp$&c� ) (92)

Here V is defined by

V(p)=2(p)+Vel (xp ) (93)

with 2(p) chosen so that �p �p$ 2(p&p$) cpcp$ is a finite-difference
approximation to /({c(xp ))2. For example, on a simple cubic lattice with lat-
tice spacing a, we could take 2(p)=/�a2 for the 6 lattice points nearest to
p=0, 2(0)=&6/�a2, and 2(p)=0 for all other lattice points. However, once
the free energy has been written in the discrete form (92), new possibilities
become available, since the non-elastic forces can now be allowed for
explicitly instead of through their contribution to the thermodynamic free
energy density f (c). For example, V(p) could be chosen to be negative
(favouring unlike pairs of atoms) if the vector p connects a nearest-neighbour
pair of sites but positive (favouring like pairs) if p connects a next-
nearest neighbour pair. Free-energy formulas of this type are the basis of
Khachaturyan's discussion(221, 217, 218) of equilibrium structures in crystals.
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The discrete version of the Cahn�Hilliard kinetic equation (80) is

dcp

dt
=:

r$

Mp, p$ \ �F
�cp$

&
�F
�cp + (94)

where F is given by (92) and the non-vanishing entries in the ``mobility
matrix'' Mp, p$ take a value proportional to the mobility M used in (80).
Equation (94) is due to Khachaturyan(211, 170) and, independently, Hillert,
Cook et al.(224, 203) It was introduced into this field by Chen and
Khachaturyan.(100, 101)

A difficulty with most derivations of (94), including the one just given,
is that although we know how to define M when c is the same at all lattice
sites��a suitable formula is M(c)=const. Dc(1&c)�kT as in the continuous-
space formula given just after Eq. (83)��it is not obvious how to define Mp, p$

when cp and cp$ are different. Microscopic derivations leading to equations of
this type(192, 108) give (provided cp does not vary too rapidly from one site to
the next) a formula corresponding approximately to (94) with Mp, p$ replaced
by M( 1

2 (cp +cp$)) or 1
2M(cp )+ 1

2M(cp$). Another possiblity is the proposal of
Koyama and Miyazaki (1998)(51, 6) to treat the right side of (94) as a constant
times a finite-difference approximation to { } [M(c(xp )) {+(x̂p )] so that it
can be replaced by the same constant times a finite-difference approximation
to the equivalent expression M(c(xp )) {2+(x̂p )+{M(c(x)) } {(�F��c(r)).
However in most computations Mp, p$ has simply been given the constant
value M(c� ), regardless of the local value of c. For the results of computations
based on (94) see Section 4.3 below.

4.2. The Stability of a Uniform Mixture

4.2.1. Isotropic Elasticity. It was pointed out by Cahn (1961), (222)

that the elastic energy term w in the free energy expression (2) tends to
stabilize a homogeneous mixture which in its absence (that is to say, if the
requirement of elastic coherence were removed) might be expected to
separate into two phases. In his original paper he showed that this effect
exists even in an isotropic solid.16
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The mixture is assumed to obey Vegard's law, that the stress-free
strain is isotropic and varies linearly with the concentration, so that

e0
ij='(c&c0) $ ij (95)

where ' and c0 are constants. Then we can insert the formula (39) for the
macroscopic elastic energy into (85) and obtain, in the absence of exter-
nally applied strain,

F=|
0 \ f (c(x))+

'2E
1&&

(c(x)&c� )2+
1
2

/({c)2+ d3x (96)

where c� =0&1 �0 c(x) d3x. The uniform state with c(x)=c� everywhere is
stable if F is a minimum with respect to variations of c satisfying the con-
straint � (c&c� ) d3x=0. It is stable against all such variations if and only
if the function f (c)+('2E�(1&&))(c&c� )2 is convex, and it is stable against
small variations if and only if this function is locally convex near c=c� , that
is to say if

f "(c� )+2'2E�(1&&)>0 (97)

where f " denotes the second derivative of the function f. The elastic term
can make the left-hand side of (97) positive even though f "(c� ) is negative,
and so the coherent mixture can be stable against phase separation even
though an incoherent mixture of the same composition would not be. This
effect can lower the critical temperature of such mixtures significantly. For
a discussion of this and related effects using a simple thermodynamic model
see Cahn and Larche� (1984).(162)

4.2.2. Anisotropic Elasticity. The above treatment of stability is
easily generalized to anisotropic elasticity (Cahn (1962) (220)). Substituting
Vegard's law (95) into (31) we obtain, in the absence of externally applied
stress,

W=
1

2 |0|
:

k{0

:
im

'2 |c(k)|2 9iimm(k)

�
'2

2 |0|
:

k{0

|c(k)|2 min
k

:
im

9 iimm(k)

=
1
2

'2 min
k

:
im

9 iimm(k) |
0

(c(x)&c� )2 d3x by Parseval's theorem

(98)
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As in the discussion of (96), it follows that the uniform state is stable
against small concentration fluctuations if

f "(c� )+ 1
2'2 min

k
:
im

9iimm(k)>0 (99)

This equation, in the form appropriate to a cubic crystal, is due to
Cahn.(220) The elastic term is always positive (see the text just after Eq. (33)
above) and therefore the macroscopic elastic interactions make the
coherent mixture more stable against phase separation than the incoherent,
just as they do for isotropic elasticity.17

A generalization of this kind of stability analysis, with the elastic
moduli depending on concentration, has been used by Thompson and
Voorhees(26) to discuss the effect of an externally applied stress on orienta-
tion of the newly-formed precipitates in an anisotropic alloy.

4.3. Simulations with the Diffuse Interface Model

4.3.1. A Single Precipitate. Wang et al.(110) carried out calcula-
tions for a single precipitate in a two-dimensional crystal with square sym-
metry and negative isotropy, using Khachaturyan's kinetic equation (94).
The initial configuration was chosen to represent a single circular
precipitate, and they waited for an equilibrium to be reached, for various
different values of a parameter representing the ratio of the elastic to the
short-range interactions in their model. Allowing for the difference between
two and three dimensions, this parameter is proportional to the one
denoted by 1�R0 in Section 1.1 of the present paper. As the parameter was
increased (which corresponds to considering larger and larger precipitates
in a real physical system) the equilibrium shape, at first round, became
more and more square; then, a hole appeared in the middle of the square
and finally it split into two rectangles. It is also possible for the faces of
the ``square'' to become concave.(60) On the other hand, the transition to
a single inclusion of only twofold symmetry, which is predicted by the
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sharp-interface model (see Section 2.3.1), does not appear to have been
observed with the diffuse-interface model. The reason for this is unclear.

In three dimensions there are even more possibilities, particularly if the
transformation strain is anisotropic (Wang et al. (1996) (42)). However, as
these authors show in ref. 62 the behaviour of isolated precipitates is not
necessarily a reliable guide to their behaviour in the presence of others.

4.3.2. Many Precipitates. Nishimori and Onuki (1990) (116)

carried out two-dimensional simulations using the elastic Cahn�Hilliard
equation (86) with an anisotropic stiffness tensor. Starting from an initial
concentration distribution corresponding to a homogeneous disordered
state (i.e., a constant plus a small spatially random term), they found that
the shapes of the precipitates were strongly affected by the elastic
anisotropy, and that they tended to align themselves along the crystal axes.
See Fig. 7d,e.

Wang et al.(111, 97, 85) (see also ref. 29), also did simulations on this type
of system, but they used the Khachaturyan equation (94) and paid more
attention to the effect of volume fraction and to to the visible details of the
evolution process. For small volume fractions, the latest observed state
consisted mostly of nearly round precipitates near the sites of a square
superlattice. This configuration was reached by a form of inverse coars-
ening, in which the precipitates that were close to sites of the nascent
superlattice grew at the expense of those that were not, regardless of the
initial sizes of these precipitates. For larger volume fractions (say 500)
the precipitates, initially disconnected, tended to coalesce, and the latest
observed state consisted of needle-like precipitates parallel to the two soft
directions. In a later paper(61) these authors consider a case where the trans-
formation strain is tetragonal rather than isotropic (modelling Mg-stabilized
cubic ZrO2); here the precipitates line up initially along crystallographic
directions, but later an alternating band structure develops as the precipitates
in some rows grow at the expense of those in others. Another tetragonal
system, TiO2 -SnO2 , was studied by Nambu and Sato, (81) who found that
a lamellar structure developed.

Koyama and Miyazaki(94, 6) used the Khachaturyan equation to
simulate an Al-Zn alloy; they found coarsening but no positional ordering;
on the other hand for Fe-Mo, where the mismatch is more than three times
as big and the elastic moduli more than twice as big, they did find ordering.
Another system studied by the same group is beta Ti-Cr, for which the
method predicted (in agreement with experiment) extremely fine platelike
precipitates distributed homogenously through the bcc matrix.(12)
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Onuki and Nishimori (1991, 1992)(107, 92) were the first to investigate
the effects of elastic inhomogeneity by means of this type of simulation. To
isolate the effect of the inhomogeneity (which, confusingly, they call ``elastic
misfit'' in some of their papers) they assumed isotropic elasticity. If the
softer (less rigid) phase occupied less than half of the total volume, then at
early times the configuration consisted of isolated precipitates of softer
phase embedded in a matrix of the harder phase, but as coarsening
proceeded these precipitates joined up to make a percolated network struc-
ture, so that it was now the harder phase which was arranged in isolated
inclusions, while the softer phase formed the surrounding matrix (see
Fig. 7(a�c)). Moreover, the growth of these precipitates was anomalously
slow, i.e., slower than the usual t1�3 law. Later, these authors did simulations
of the same type for anisotropic (but still inhomogeneous) elasticity.(104)

The anisotropy made the inclusions align themselves parallel to one of the
crystal axes, but still the softer phase wrapped the harder one. If an exter-
nal stress in an oblique direction was applied, the preferred directions of
the inclusions tilted so as to be more nearly perpendicular to one of the
principal axes of the external stress.

The numerical method used by Onuki and Nishimori for the time
evolution was not an accurate one; later work using accurate methods (Leo

Fig. 7. Typical snapshot pictures for isotropic but heterogeneous elasticity (a�c) and
homogeneous elasticity with cubic anisotropy (d�e) using equations of the type (85�86).
In (a�c), the stiffer phase is shown white with volume fractions of 0.3, 0.5 and 0.7, respectively
(from ref. 107). Note that the softer phase always wraps stiffer particles. In (d�e), the volume
fraction of the white phase is 0.5 and 0.7, respectively (from ref. 116).
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et al. 1998(8)) has, however, confirmed their conclusions about the reversal
of the topological roles of the two phases.

These topological changes, which the sharp-interface model had failed
to predict because it is not suited to following such changes, can
nevertheless be understood qualitatively on the basis of the sharp-interface
formula for spherical inclusions given in Section 2.2.1. According to that
formula the energy per unit volume of precipitate is less for rigid
precipitates in a flexible matrix than for flexible precipitates in a rigid
matrix. Or, even more qualitatively, consider the extreme case where both
phases have the same bulk modulus but one of the phases is perfectly
flexible. i.e., its shear modulus is zero. If the inclusions are perfectly flexible
the rigidity of the surrounding matrix will prevent them from taking up the
sizes where their density has its stress-free value and therefore they will
have some strain energy; but if the matrix is perfectly flexible then the
(rigid) inclusions can take up their stress-free sizes and shapes and the
matrix can expand or contract to its stress-free density, so that there is no
strain energy at all. Thus the energy is lower for a perfectly flexible matrix
than it is for perfecty flexible inclusions.

4.3.3. Ordered Phases. In alloys such as Ni-Al one of the phases
(in this case the Ni3 -Al phase) can have more than one variant. Such
systems can be treated using Khachaturyan's kinetic equation (94),
generalized by incorporating additional order parameters as described at
the end of Section 4.1.1. Simulations of various types of alloy requiring this
type of treatment have been done by Sagui et al. (1994), (72) by Wang and
Khachaturyan (1995), (62) by Li and Chen (1998) (10, 11) and by Wang et al.
(1998).(16)

An important new possibility is that the transformation strain can be
anisotropic and hence different in the different variants; then, when an
external stress is applied, one variant will grow at the expense of another.
In this way, since the conditions of Eshelby's theorem (see Section 2.1.4) do
not apply, rafting can take place even with homogeneous elasticity.
A recent paper by Le Bouar et al.(1) models the time evolution of alloys of
this type in which the matrix is a cubic crystal but the precipitates are
tetragonal, using a generalized stochastic Cahn�Hilliard equation with
three dependent variables: the concentration and two order parameters.
The theoretical model is spectacularly successful: see Fig. 2.

4.3.4. Thin Films. In this section we look at the possibility of
elastic interactions arising from a violation of condition 4 of the Bitter-
Crum theorem, that is to say in a system with boundaries. An effect of this
type was noted by Larche� and Cahn(89) who pointed out that if spinodal
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decomposition takes place in an isotropic film with uniform elastic con-
stants the equilibrium state can have the two phases on opposite faces of
the film, and because of the elastic misfit the film will bend. This effect
has indeed been observed, in the :&:$ phase separation of Nb-H.(182, 177)

In these experiments, the hydrogen-rich :$ phase was found on the outer
side of simply curved specimen foils. In some cases the foil was even observed
to split into two pieces with half thickness. Both halves were strongly
curved. These results were interpreted as a spinodal decomposition process
where the specimen thickness was equal to the spinodal wavelength for the
simply curved foil and for each of the halves of the split foil.

Putting an appropriate approximation for the elastic strain field into
the elastic Cahn�Hilliard equation (86) Larche� and Cahn obtained the
kinetic equation

�c
�t

={2 _df (c)
dc

+
2'2E
1&& \c&c� &

3x
2h

M c
1+&/{2c& (100)

where ' is the compositional expansion coefficient, defined in (95), E and
& are Young's modulus and Poisson's ratio, c� is the average concentration,
and M c

1 is the first moment of the concentration distribution in the direc-
tion at right angles to the film, defined by

M c
1=

1
h2 |

h

&h
(c&c� ) x dx (101)

Here h is half the thickness of the film and the coordinate system in the
material is chosen to make the two faces of the unstrained film the planes
x=h and x=&h. The one-dimensional version of these equations,
obtained by neglecting the dependence of c on y and z, was studied both
analytically and numerically by Larche� and Cahn, and numerically in more
detail by Cahn and Kobayashi.(45) The most striking result was that the
elastic term accelerated the separation into two phases.

Another bounded-system problem to which the diffuse-interface model
can be applied is the growth of thin films by deposition, an important
process in the semiconductor industry. The elastic problem is more com-
plicated than before because there is now a misfit between the film and the
substrate as well as the one due to compositional nonuniformity. Moreover,
the possibility of surface diffusion(230, 137) and the effect of material arriving at
the surface have to be allowed for. At the time of writing the implications of
linear stability theory are still being worked out, (109, 83, 49, 31, 4, 9) though non-
linear effects are clearly important too.(84)
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5. ATOMIC LATTICE MODELS

5.1. The Born Model

In this approach continuum elastic theory is abandoned; instead the
elastic properties of the material are obtained by considering the mechani-
cal forces between individual atoms. Each atom is assiged a definite site p
on the lattice, whose position when the lattice is undistorted we denote (as
in Section 4.1.3) by xp , and the displacements up of the atoms from these
sites are assumed to be small enough to justify using the harmonic
approximation, i.e., treating the force on each atom as a linear function of
all the atomic displacements of all the atoms. The way to calculate the
macroscopic elastic properties of a crystal from the interatomic force
parameters is explained in the book by Born and Huang (1954), (232) and,
by doing the calculation in reverse, the interatomic force parameters can be
obtained from phonon dispersion curves. For simplicity, we assume that
only two-body forces act, so that atoms which are close enough together
to interact can be thought of as being joined by springs. However, one
should not be misled by this picture into assuming that all the atomic inter-
actions are necessarily central forces; this assumption would imply certain
relations.between the elastic constants (sometimes called Cauchy rela-
tions)(232) which are violated in many real materials. For example in a crys-
tal with cubic symmetry the Cauchy relation is C12=C44 which, although
a good approximation for some ionic crystals, is a very bad one in most
metals.

In the case of an alloy, the interaction between two atoms depends not
only on their separation but also on their nature. It is usual to think of
their interaction energy as the sum of two parts, one of which, the so-called
chemical interaction, depends only on what kind of atom they are and not
on their positions; the other part, the elastic interaction, does depend on
their positions and has a minimum value of zero which is achieved for
some relative position. This energy-minimizing relative position depends on
the nature of the two atoms: one can think of the two kinds of atoms as
being of different sizes, and the natural length of the spring joining the cen-
tres of two atoms as being the sum of the radii of the atoms. The stiffness
of the spring may also depend on the nature of the two atoms. The theory
of the equilibrium properties of solid solutions based on this type of model
has been developed by Khachaturyan(211, 170) and by Cook and de Fontaine
(1969, 1971, 1972).(205, 201, 199) For example Seitz and de Fontaine (1978) (186)

have used the model to do energy calculations for various arrangements of
a pair of precipitates in Al-Cu alloys; the results indicated a tendency for
the precipitates to stack as parallel disks, providing a possible explanation
of the oberved behaviour of supersaturated Al-Cu solid solutions.
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Diffusion can be represented in this model by allowing atoms of the
two different kinds to exchange places from time to time, though suf-
ficiently rarely to allow the lattice to come to equilibrium under the new
forces after each exchange. These exchanges can be simulated by the Monte
Carlo method known as Kawasaki dynamics, in which the following
sequence of steps is carried out a large number of times: (i) choose a pair
of neighbouring atoms at random, and also a random number ! uniformly
distributed between 0 and 1, (ii) calculate the increase in free energy 2F
that would occur if the two atoms were exchanged, and (iii) carry out the
exchange if and only if !<p(2F ), where the transition probability function
p( } ) is chosen so as to satisfy the detailed balance condition p(x)�p(&x)=
exp(&x�kT ). The change in free energy consists of two parts: one is the
change in (mean) energy which is equal to the change in the minimum
potential energy as a function of the atomic displacements, since the vibra-
tional energy is an unchanging kT per degree of freedom. The other part
is an entropy term depending on the vibrational spectrum of the lattice,
which is generally neglected. Indeed, this term is zero if the atomic stiffness
parameters are independent of the way the two kinds of atoms are
arranged on the lattice sites, a situation which makes the material elasti-
cally homogeneous. Just what part the entropy term should play in models
capable of representing heterogeneous elasticity is unclear.

The harmonic approximation used in the Born model, though con-
venient, is not essential. In the simulations of Ikeda and Matsuda(77, 33) the
microscopic potential energy function is represented as a sum of anhar-
monic two-body central forces and the energy, for a given arrangement of
A and B atoms over the lattice sites, is then computed by numerical mini-
mization over displacements, using a relaxation procedure. This method
appears to be slower than the ones based on the harmonic approximation,
but it has the potential advantage of greater realism.

We shall describe two types of simulation in which Kawasaki
dynamics has been used to follow the diffusive motion of the atoms; one
using central forces and heterogeneous elasticity, and the other using non-
central forces and homogeneous elasticity.

5.2. Central Forces

5.2.1. The Model. In two dimensions, the elastic stiffness tensor of
any crystal with hexagonal symmetry is isotropic; moreover, if only central
forces act there is a Cauchy relation connecting the elastic constants which
is(194) equivalent to &=1�4 (&=Poisson's ratio). In three dimensions, the
elastic stiffness tensor of a harmonic crystal with fcc symmetry and only
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central forces is likewise isotropic(20) and again Poisson's ratio is 1�4.
Lee(53, 20) took advantage of these circumstances to simulate inclusions in
a isotropic matrix using an atomic lattice model. He took the elastic energy
to be the sum of the energies of a set of longitudinal harmonic springs, one
for each pair of nearest neighbour sites, and both the stiffness and the
natural length of each spring depended on the nature of the atoms at its
two ends. In symbols, the elastic energy is

W= 1
4 :

p

:
p$

L(p&p$, #p , #p$)(rp, p$&l(p&p$, #p , #p$))2 (102)

where sums go over all the sites on some lattice, #p is defined to to be +1
if site p is occupied by an A atom and &1 if it is occupied by a B atom,
L(p&p$, #, #$) and l(p&p$, #, #$) are the stiffness and natural length of the
spring connecting an atom of type # at site p to an atom of type #$ at site
p$, and rp, p$=|xp &xp$ |+(up &up$) } (xp &xp$) is the linearized distance
between the atoms at sites p and p$.

5.2.2. The Results. For a system of two inclusions in two dimen-
sions, Lee found(53) that if the inclusions were softer than the matrix they
deformed and eventually coalesced; if they were harder, they remained cir-
cular and the larger one grew while the smaller one shrank to zero. This
work was extended to anisotropic elasticity in ref. 35, with similar results.

In ref. 20 Lee (1997) studies the effect of elastic inhomogeneity on a
system of two inclusions for which the misfit strain and the elastic con-
stants can both be different. If one inclusion is hard (i.e., harder than the
matrix) and has a misfit strain while the other is soft and has no misfit, or
a misfit of the opposite sign, then at equilibrium (in two dimensions) the
soft inclusion surrounds the hard one. But if the soft inclusion has a misfit
strain and the hard inclusion has none, the inclusions move away from one
another; and if the two inclusions have misfit strains of the same sign, the
soft inclusion partially wets the hard one but the rest of the soft inclusion
tries to get away. Similar results are obtained in three dimensions. If an
external stress is applied then the inclusions change their shape in a way
compatible with Eq. (55). Reviews of this work, and more, are given in
refs. 21 and 7.

Ikeda and Matsuda(77, 33) report on three dimensional simulations of a
non-harmonic model. If the precipitates are elastically softer than the
matrix, a giant percolating cluster forms (as in the diffuse-interface simula-
tions described in Section 4.3.2 above). If the precipitates are as hard as the
matrix, or harder, an ordered structure develops.
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5.3. Noncentral Forces

5.3.1. The Model. Fratzl and Penrose (1994) (47) describe a model
for use in atomic lattice simulations which is intended to represent coars-
ening in a cubic crystal with realistic elastic constants. For reasons
explained earlier in this chapter, it is essential to include some non-central
forces in the model. This can done by adding to the right side of the
``longitudinal'' elastic energy formula (102) a term representing transverse
springs

1
4 :

p

:
p$

T (p&p$)[(up &up$) 7 (xp &xp$)�|xp &xp$ |]2 (103)

In these simulations, a square lattice was used, with elastic forces which
can be pictured by imagining the atoms connected by three different types
of spring: longitudinal springs connecting nearest neighbors, transverse
springs connecting nearest neighbors, and longitudinal springs connecting
next-nearest neighbours. To model the elastic misfit, the natural length of
a longitudinal spring connecting sites p and p$ was made to depend linearly
on #p +#p$ , but the stiffnesses of all the springs were taken to be indepen-
dent of what type of atoms they connected. This model is characterized by
three stiffness constants, the same as the number of elastic constants in a
cubic crystal. It is possible, in fact, to relate the microscopic stiffnesses to
the macroscopic elastic constants. Formulae for different lattices are given
in, for example, refs. 205, 170, 47.

Given any configuration [#p ] of A and B atoms on the lattice, the
minimum of the elastic energy with respect to the atomic displacements u
can be written down as a function of the #p 's. The elastic free energy differs
from this minimum by a constant, which can be ignored. Since the elastic
constants are taken to be homogeneous, this calculation can be done
using Fourier transforms, (205, 170) in a similar way to the derivation of
Khachaturyan's formula (36) given in Section 2.1.3 (Eqs. (28)�(37)). The
result can be written

W=
1

2N
:

k{0

B(k) |#~ (k)| 2+const. (104)

where the sum extends over the first Brillouin zone of the lattice and #~ is
the Fourier transform of #p :

#~ (k)=:
p

#pe ip } k (105)
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The ``elastic potential'' B(k) can be calculated for any type of lattice, and
has been given explicitly for some, e.g., in refs. 205, 47.

The elastic energy (104) can be written in an alternative form, as a
sum of interactions between pairs of lattice sites analogous to the double
sum in Eq. (92). Adding to it the chemical energy, the important part of
which can also be expressed as such a sum, we obtain for the total free
energy

F=W0+ 1
2 :

p

:
p$

(Vel (p&p$)+Vchem(p&p$)) #p#$p (106)

where W0 is a constant, Vel (p) is the inverse Fourier transform of B(k)
(in which we take B(0)=0, so that �p Vel (p)=0) and Vchem(p&p$) #p#p$

represents the short-range chemical interaction between two atoms on sites
p and p$.

The effects of external stress can also be treated to some extent within
this framework.(52, 19) The treatment requires, however, a modification of
the model since according to Eshelby's theorem (see Section 2.1.4) no effect
will be seen for homogeneous elasticity. This modification is to assume that
the stiffnesses of the springs depend weakly on what kind of atom they con-
nect, and to treat the nonuniformity as a perturbation��for details see
ref. 19. In analogy with the analysis for an elastic medium summarized at
the end of Section 2.1.3, the elastic energy can be expressed as the sum of
three parts, one of which is the non-quadratic ``Eshelby'' interaction. To
keep the problem mathematically simple, this non-quadratic interaction
was neglected in ref. 19.

5.3.2. The Results. The model just described can be used for
simulations in various ways.

When the chemical interaction is taken to be a nearest-neighbour
attraction and the elasticity has cubic anisotropy, stripe-like domains
develop under the influence of the lattice misfit.(30) The stronger the misfit
or the stronger the anisotropy of the elastic constants, the faster the
anisotropy of the precipitates increases. The mean domain size, however,
(defined as the ratio of area to perimeter) always increases in proportion
to t1�3 as in the case without elastic misfits.(30)

When uniaxial external stress is included in the model, wavy parallel
stripes develop with an orientation depending on the direction of the
applied stress.(52, 19) Thus, the cubic symmetry in the domain morphology
is broken, in agreement with the experiments on rafting described in Sec-
tion 1.2.3. Surprisingly, the mean domain size still increased in proportion
to t1�3.
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Fig. 8. (a) and (c) are reproductions of Figs. 1(e) and 1(g), respectively. (b) shows results
from computer simulations of an Ising model with elastic interactions on a simple square lat-
tice and with repulsive interaction of like atoms on nearest neighbor sites (with interaction
energy J) and attractive interaction of like atoms on next nearest neighbor sites (energy J�2).
Black shows the disordered phase (containing mostly A-atoms) and white the ordered phase
(consisting of about half A and half B atoms). The overall concentration of B-atoms was 0.35
and the run was performed at a temperature of T=0.567 J�k on a 128_128 lattice and
stopped after 106 MCS. (d) The same model, temperature and annealing time as in (b), but
with an additional external load along the vertical direction (simulations from ref. 14).

When the chemical interaction is taken to be a nearest neighbour
repulsion instead of an attraction,(14) precipitates with atomic order of anti-
ferromagnetic type are formed. The qualitatively new feature compared to
the previous cases is that the precipitates can be ordered on two different
atomic sublattices. Where two domains ordered on different sublattices
meet, there is an anti-phase boundary (APB). Such APBs have the
property of being wetted by the disordered matrix, thereby creating new
boundaries between precipitates. The presence of wetted APBs also influen-
ces the rate of coarsening. The resulting patterns, illustrated in Fig. 8, are
extremely similar to those found for nickel-base superalloys, as described in
Section 1.21.(52, 19, 27, 99, 70, 36)

6. CONCLUSION

We can now consider to what extent the theoretical models we have
been describing explain the various experimental phenomena mentioned in
Section 1.2.

6.1. The Shapes of the Precipitates

The plate-like shape of the individual precipitates in alloys such as
Al-Cu and Cu-Be, mentioned in Section 1.2.1, is consistent with the predic-
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tion of the sharp-interface model (Section 2.3.1) that when the interface
energy is negligible and the material is elastically anisotropic the equi-
librium shapes of the precipitates are plates perpendicular to an elastically
soft direction. Two-dimensional multi-precipitate simulations with anisotropic
elasticity, using either the diffuse-interface model (see Section 4.3.2 and
Fig. 7(d,e)) or the atomic lattice model, (30) also give long thin precipitates
perpendicular to an elastically soft direction.

The dependence of the shape of precipitates on their size, (more
precisely, on the parameter R�R0 defined in Section 1.1) was investigated in
the experiments with Ni-Al-Mo alloys illustrated in Fig. 1. The individual
precipitates looked round when this parameter was very small, but roughly
square when it was large. All three of the models we have described explain
this dependence as an effect of the elastic anisotropy; it is seen particularly
clearly in calculations using the sharp interface and diffuse interface
models, where the behaviour of a single precipitate as a function of its size
(that is, of the ratio of its elastic to its interfacial energy) has been con-
sidered (see Sections 2.3.1, 3.2.2 and 4.3.1).

The splitting of large cube-like precipitates in some nickel-base alloys
(see Fig. 4) has also been investigated using various theoretical approaches,
but the results are inconsistent. Sharp-interface energy calculations assum-
ing inclusions of fixed shape do give this effect (Sections 2.3.1 and 2.3.2), as
do diffuse-interface calculations of the equilibrium shape (Section 4.3.1).
On the other hand the sharp-interface evolution calculations that have
been done so far (Section 3.2.2) do not exhibit the effect��possibly because
of the difficulty of following topological changes in the sharp-interface
model.

6.2. The Arrangement of the Precipitates

Experiments show that when the (anisotropic) elastic interaction is
strong enough to affect the shapes of the precipitates, these precipitates
tend to align along certain directions (see Fig. 1(c)). A similar type of
ordering is found in the sharp-interface model (Sections 2.3.3, 3.2.3, 3.2.4)
and the diffuse-interface model (Section 4.3.2).

6.3. The Rate of Coarsening

While the t1�3 growth law for coarsening in alloys without elastic misfit
is reasonably well understood, (225, 226, 133) theory has been less successful in
explaining the time-dependence when elastic forces do act. The experiments
illustrated in Fig. 3 indicate(55) that if the elasticity is strongly anisotropic
and (relatively) weakly heterogeneous, the coarsening follows a t1�3 growth
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law, whereas if it is weakly anisotropic and strongly heterogeneous, the
coarsening follows a t1�3 law only for a limited time, and then slows down
or stops. The atomic lattice simulations described in Section 5.3.2 also give
t1�3 growth for an elastically homogeneous anisotropic lattice, but theory
does not explain why the elastic forces apparently do not affect the growth
exponent at all in this case. For a heterogeneous lattice without anisotropy
the diffuse-interface simulations described in Section 4.3.2 predicted that
the growth would be slower than t1�3 but not that the growth exponent
would change rather abruptly as shown in Fig. 3(b,c). Theory also predicts
an interesting topological rearrangement if in the initial configuration the
precipitates are softer (less rigid) than the matrix, but these experiments
did not reveal any striking difference of behaviour between precipitates that
were much softer than the matrix and ones that were harder.

6.4. Rafting

The effect of an externally applied stress on the shapes and arrange-
ment of the precipitates, described in Section 1.2.3 and illustrated in
Fig. 1(g), can be understood in principle on the basis of isotropic (but
inhomogeneous) elasticity using the sharp interface model, as discussed in
Section 2.2.1. The effect has been studied in a more detailed way, both for
isotropic and anisotropic elasticity, using all three of the theoretical
approaches we have described (Sections 2.2.2, 4.3.2, 5.2.2, 5.3.2 and
Fig. 8(c,d)). All these approaches reproduce, to a greater or less extent, the
qualitative experimental features of rafting, summarized in equation (55).

6.5. Generalizations of the Model

Figures 2 and 8 illustrate two cases that go beyond the simple binary
alloy with either isotropic or homogeneous anisotropic elasticity which
underlies most of the theoretical work described in this article. In Fig. 2 the
precipitates have a different crystal symmetry from the matrix, and in Fig. 8
the precipitates can occur in more than one variant. In both cases, the
results illustrate the excellent qualitative agreement with experiment that
simulations based on a well-chosen theoretical model can give.

APPENDIX. LIST OF SYMBOLS

Symbol First
appearance

Meaning

B(k) (37)
B(k) (104) ``elastic potential''
C11 , C12 , C44 (7) elastic moduli of cubic crystal
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c (57) concentration of A (solute) atoms
c:

0 Section 3.1 zero-temperature equilbrium value of c in 0:

c0 (95) concentration at which stress-free strain is 0
D (57) diffusivity
E (39) Young's modulus
eij (3) strain tensor
e0

ij (4) stress-free strain tensor
eext

ij (31) ``externally applied strain''
e:

ij (34) stress-free strain in phase :
F (2) free energy of system
F 1 (2) free energy of interface
f (2) thermodynamic free energy density
G (6) shear modulus
Hijmn (38)
K (6) bulk modulus
K

*
, Kv (45), (53)

k Boltzmann's constant
L (102) stiffness of a longitudinal spring
l (102) natural length of a longitudinal spring
M (80, 94) mobility coefficient or matrix
n various a unit vector
p (27) excess pressure inside inclusion
p (92) a lattice site
q (4) isotropic stress-free strain
R Section 1.1 radius of (spherical) precipitate
R0 Section 1.1 ``crossover'' value of R
rp, p$ (102) linearized distance between atoms on sites p, p$
T temperature
T (103) stiffness of a transverse spring
T0 (79) mean-field transition temperature
u (3) displacement field
u$ (18) periodic part of u
V (93) total effective two-site interaction
Vchem (106) chemical interaction
Vel (90) two-point elastic interaction
vn (58) normal velocity of interface
W elastic energy of the specimen
W ext (2) potential energy of loading mechanism
Wint (56) elastic interaction energy
w (2) elastic energy density
w� : (44) space average of w
x (2) reference position of material point
xi (3) Cartesian components of x (i=1, 2, 3)
Z (33)
:, ; the A-rich, B-rich phases
1 (2) the interface between phases : and ;
# (102) +1 (&1) for site occupied by an A (B) atom
2(z) (93) / times finite-difference Laplacian
(2e) ij (6) eij&e0

ij

$ij (4) 1 if i= j, 0 if not
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' (95) compositional expansion coefficient
'(x) (84) order-parameter field
%(k) (35)
} (26) mean curvature of 1
4 (84) kinetic coefficient in Allen�Cahn equation
*ijmn (5) elastic (stiffness) tensor
+ (60) chemical potential
+̂ (87) diffusion potential
& (39) Poisson's ratio
? (63) grand canonical pressure
_ (8) interfacial energy (surface tension)
/ (78) coefficient of gradient term in free energy density
9ijmn (32)
0, 0: , 0; (2) region occupied by specimen, inclusions, matrix
�0 (9) surface of 0
|0| (30) volume of 0
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